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This book discusses the calculations for 
present-day elastic tensometric elements, and 
presents methods for utilizing them. Along with 
calculations for strength and rigidity, the 
problems of determining the nonlinearity of 
certain elastic elements are examined. Great 
attention is devoted to the use of statistical 
methods for experimentally determining several 
parameters characterizing the metrological 
properties of elastic elements. 

The book is designed for design engineers 
and scientists interested in applying tenso- 
metric methods to the measurement of forces. 
The book may also be used by students in the 
related disciplines. 
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COMPUTATIONS OF ELASTIC TENSWTRIC ELEMENTS 

G. F. Malikov, A. L. Shneyderman, A. M. Shulemovich 

Introduct ion 

Lever systems of mechanical scales and fo rce  measuring devices have, along 
with high metrological p rope r t i e s ,  s e r ious  drawbacks which m a k e  i t  d i f f i c u l t ,  
and sometimes impossible, t o  apply them i n  many areas of technology. I n  pa r t i -  
cu l a r ,  they have a l a r g e  s t roke ,  which makes i t  impossible t o  use them i n  many 
devices which are very s e n s i t i v e  t o  impacts and other  mechanical e f f e c t s ,  and 
they are very cumbersome. Their use frequently makes i t  impossible t o  auto- 
m a t e  a technological process. It complicates remote con t ro l  and readout. 
pensive foundations are frequent ly  required under s t a t i o n a r y  scales, etc. 

EX- 

The development of tensometric fo rce  measuring devices has recent ly  been 
in t ens i f i ed .  These devices have g rea t  advantages, as compared with a l eve r  
system of mechanical scales and force measuring devices. 
t he re  is p r a c t i c a l l y  no branch of our na t iona l  economy i n  which tensometric 
force measuring devices are not  employed. 

A t  the  present time, 

/3* 

The p r i n c i p l e  underlying t h e  operation of the tensometric fo rce  measuring 
device may be most simply c l a r i f i e d  with a s p e c i f i c  example. L e t  us  i nves t iga t e  
the  simplest  elastic element representing a column having a c i r c u l a r  o r  a square 
cross  sect ion,  which simply expands o r  contracts  (Figure 1). S t r a i n  gauges 
forming a br idge c i r c u i t  are applied t o  the  lateral su r face  of t h e  column. 
Under t h e  inf luence of t he  load t o  be measured, t he  column is deformed together 
with the  s t r a i n  gauges. 
and the re  is  a change i n  the  vol tage i n  the  measuring diagonal of t he  bridge. 
The load being measured is determined from the  magnitude of t h i s  vol tage change. 

(1) 

The electric r e s i s t ance  of the s t r a i n  gauges changes, 

The g rea t  advantages of t h e  method under consideration can be seen i n  t h i s  
very simple example. 
(and a correspondingly s m a l l  s t roke ) ,  and is very compact even when designed f o r  
l a r g e  loads. 
vices of various types. 

A tensometric fo rce  measuring device has g r e a t  r i g i d i t y  /4 
This makes it  possible  t o  i n s t a l l  i t  r e l a t i v e l y  simply i n  de- 

Due t o  t h e  absence of prisms and moving p a r t s ,  it is not  s e n s i t i v e  t o  im-  
pac t s  and other  mechanical e f f e c t s .  
b e  i n s t a l l e d  i n  a hermetic container,  by means of which i t  may be completely 
in su la t ed  from w a t e r  o r  o i l .  

*Note: Numbers i n  the margin i n d i c a t e  pagination i n  t h e  o r i g i n a l  foreign t ex t .  

(l)An extensive amount of l i t e r a t u r e  has been devoted t o  t h e  problem 
of the electric port ion of t he  method under consideration f o r  measuring forces  
[see, f o r  example, t h e  s t u d i e s  (Ref. 11, 18) etc.]. 

A tensometric fo rce  measuring device may 

It is  a l s o  poss ib l e  t o  employ w a t e r  cooling and 
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t o  use it under very d i f f i c u l t  operat ional  conditions. 

The expenses e n t a i l e d  i n  producing s t a t i o n a r y  weighing devices i s  g r e a t l y  
reduced with the tensometric method. 
operation of any amount of tensometric force measuring devices,  s ince  t h e i r  
output e l e c t r i c  s igna l s  are summed, and ind ica t e  the  t o t a l  weight independently 
of t he  pos i t i on  of t he  center  of gravi ty .  The consumption of m e t a l  i s  thus 
considerably reduced, s ince  l eve r  systems can contain a l a rge  amount of m e t a l .  
Without tensometric force measuring devices, i t  is impossible t o  automate many 
technological processes, e spec ia l ly  i n  t h e  chemical and metal lurgical  industry.  
The d i r e c t  e l e c t r i c  output g rea t ly  s impl i f i e s  t he  problem of remote con t ro l  
and recording. 

It is  not d i f f i c u l t  t o  provide p a r a l l e l  

Tensometric force measuring devices are applied i n  d i f f e r e n t  areas of 
technology. Their accuracy has increased so  g r e a t l y  t h a t  they have closely 
approximated the  accuracy of mechanical s c a l e s  with a l eve r  system. 
it possible  t o  apply them successful ly  almost everywhere, without employing 
mechanical s ca l e s ,  as w e l l  as i n  those cases where the  u t i l i z a t i o n  of mechanical 
scales is impossible. W e  s h a l l  give c e r t a i n  examples f o r  t he  use of the tenso- 
metric method of measuring forces.  

This makes 

Tensometric force measuring devices have been extensively employed i n  
several branches of industry,  p a r t i c u l a r l y  i n  t h e  chemical and metal lurgical  
industry,  f o r  continuous weighing and monitoring. 

The tensometric elastic elements i n  crane scales make i t  possible  t o  per- 
form the  processes of weighing and t ransport ing loads a t  the same t i m e .  W e  
would l i k e  t o  point out t h a t  the use of mechanical soa l e s  i s  not excluded i n  
t h i s  case, whereas tensometric elastic elements can be r ead i ly  i n s t a l l e d  a t  any 
locat ion on the  crane. 

Recently tensometric e l a s t i c  elements have begun t o  replace lever systems 
i n  platform scales, which are employed i n  very diverse  branches of t he  na t iona l  
economy from hot shops of metal lurgical  combines t o  railway t ransport ,  where 
weighing of moving s tock is performed. I n  the la t ter  case, a whole group of 
problems is encountered, connected with an increase i n  t h e  weighing rate,  
recording and t o t a l l i n g  the loads,  which cannot be solved by employing mechan- 
i ca l  lever scales. 

/5 

There are a great  many such examples. W e  s h a l l  confine ourselves t o  one 
g rea t  advantage of t he  tensometric method of measuring forces.  Mechanical 
scales, force measuring devices,  and t h e i r  l eve r  systems are designed, as a r u l e ,  
f o r  operating i n  a s p e c i f i c  narrow region of appl icat ion ( for  example, commer- 
c i a l  s c a l e s  cannot be employed i n  any technological process without s i g n i f i c a n t  
a l t e r a t i o n ;  a l eve r  system of platform scales cannot be employed f o r  t h e  weigh- 
ing platform of other  dimensions, e t c . ) .  
of d i f f e r e n t  types of scales and fo rce  measuring devices having very diverse  
dimensions. With respect t o  tensometric elastic elements, i t  is possible  t o  
develop universal  standard e l a s t i c  elements with a d i f f e r i n g  l imi t ing  load, 
which can be employed i n  a l l  branches of industry and may be in se r t ed  i n  very 
diverse  technological l i n e s  without any d i f f i c u l t y .  

This has produced an enormous amount 
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An elastic element is the basic mechanical part of a tensometric force 
The requirements imposed on the design of this element are measuring device. 

determined by the metrological properties of scales and force measuring devices, 
and are occasionally so great that it is very difficult to satisfy them. 
providing a sufficiently high signal must be present in the elastic element. On 
the other hand, it must be rigid in order to produce small displacements and 
nonlinearity, which arises when the form does not exceed a permissible amount. 
An elastic element must be compact. 
dimensions in order that the arrangement and mounting of strain gauge elements 
is not difficult. 

Stresses 

However, it must have sufficiently large 

One of the basic requirements imposed on an elastic element is as follows. 
It must be insensitive to the influence of a transverse loading component. 
addition, the supports of an elastic element must be such that the stress state 
in the zones containing the strain gauge elements does not depend on the method 
with which the force is applied. 

In 

It is naturally impossible to create a universal structural form of an 
elastic element which can satisfy all the numerous, sometimes contradictory, 
requirements. Different types of elastic elements must be produced, depending 
on the limiting load, their region of application, and on the metrological 
requirements. 

Thus, the probZem of constructing and designing e las t i c  t ensme t r i c  eZements 
i s  transformed i n t o  the independent problem of the t ensme t r i c  method ofmeasur- 
ing forces. 

It must be emphasized that it is not as difficult to develop elastic 
elements for large limiting loads as it is for small loads. In the latter case, 
they are so small that it is impossible to displace sensing elements with them, 
or -- if the structural dimensions are permissible -- they are so large that 
significant nonlinearity of the readings takes place. The production of elastic 
elements with high metrological properties under small (from several tens of 
grams to several kilograms) limiting loads is an immediate problem, and represents 
an independent subject for scientific research. 

- 16 

Rigid requirements are imposed upon the material of elastic elements, due 
to the high metrological properties of tensometric scales. 
satisfy as accurately as possible a linear dependence between the stresses and 
deformations since the scales of the devices are usually linear, and nonlinearity 
of the material elastic properties occurs as a systematic error. For the same 
reason, the material must not have hysteresis. 
stresses and deformations must be combined with a proportionality limit which 
is as high as possible, making it possible to assume high stresses and thus to 
increase the sensitivity of the apparatus. 

The material must 

A linear dependence between the 

The elastic, tensometric force measuring devices can operate under very 
diverse, occasionally quite difficult, thermal conditions. Therefore, the 
material from which the elastic element is prepared must provide the smallest 
possible change in the modulus of elasticity when the temperature changes. 

3 



Summing up the  statements presented above, w e  may say t h a t  mzj imperfection 
in the properties of the materia2 appears as an imperfection i n  the metrologica2 
properties of the tensmetric force measuring device. 

One of the most widely used types of elastic elements i s  the  column, which 
simply elongates o r  compresses (Figure 1 ) .  Figure 2 shows t h e  construction of 
fo rce  measuring devices i n  which t h i s  elastic element is used. The t ransverse 
cross sec t ion  of t h e  column may be e i t h e r  c i r c u l a r  o r  square. Different  ways 
of a t taching the  end of an elastic element t o  t h e  body by means of a membrane 
are planned, i n  order t o  compensate f o r  the t ransverse component of t h e  ex te rna l  
load. 
and may be primarily used f o r  high l imi t ing  loads,  beginning approximately 
a t  50OQ kgf and above. 

This type of tensometric fo rce  measuring device has s m a l l  non l inea r i ty ,  

lp 

Figure 1. Tensometric Column 

The r ing is another widely used 
type of elastic element (Figure 3). 
It is  employed f o r  smaller l imi t ing  loads 

a) 

Figure 2. E l a s t i c  Elements of t he  
Shaft  Type: 

a - with one membrane; b - with two 
membranes. 

than the  column. 
is employed. I n  the case of smaller loads,  the r ing has a s m a l l  curvature,  
whereas the  curvature of t he  a x i a l  l i n e  of these and o the r  beams may be 
var iable .  The t ransverse cross sec t ion  may be constant o r  var iable .  J u s t  as /7 
i n  the preceding case, a membrane is a l s o  used here  f o r  decreasing the  influence 
bf t he  t ransverse components of t h e  ex te rna l  load which inevi tably arise. 

In  the  case of higher loads, a r ing  having a l a rge  curvature 

Attention should a l s o  be ca l l ed  t o  the  construction of elastic elements 
which react very l i t t l e  t o  the t ransverse component of the load, and a l s o  t o  
the eccen t r i c i ty  of t he  point of appl icat ion f o r  t he  ,external force.  This can 
be avoided without compensating membranes. 

The element shown i n  Figure 4 w a s  prepared from a steel tube which w a s  
curved i n t o  a toroid.  
and t o  the  ex te rna l  surface of t he  tube. This e las t ic  element has several 
advantages: i t  is  not very high, i t  is  s u f f i c i e n t l y  r i g i d ,  i t  reacts very l i t t l e& 
t o  the  t ransverse component of t he  load and t o  the e c c e n t r i c i t y  of t he  point  of 
appl icat ion f o r  the ex te rna l  force.  

The sensing elements are attached both to t he  i n t e r n a l  

4 



I n  a l l  t h e  cases inves t iga ted  above ,s t ra in  gauges are at tached i n  
t h e  zones of t h e  g rea t e s t  stresses. 
t h e  body of t h e  e las t ic  element by means of an adhesive f i lm  which has in- 
e las t ic  proper t ies ,  t h e r e  is a displacement of t h e  s t r a i n  gauge with 
respect  t o  t h e  body of t h e  e las t ic  element, leading t o  nonl inear i ty  and hystere- 
sis of t he  readings. 
l o g i c a l  p roper t ies  of- t he  tensometric force  measuring device worse, 
gauges have recent ly  been wound i n t o  a s p i r a l ,  and are not  appl ied a t  a s p e c i f i c  
posi t ion.  

Since t h e  sensing element i s  at tached t o  

I n  order  t o  avoid t h i s  phenomenon which makes t h e  metro- 
steel  s t r a i n  

The adhesive f i lm in t h i s  case is  only employed t o  f i x  the posi t ion.  

Figure 3.  E l a s t i c  Element of t h e  Figure 4 .  Toroidal E las t ic  Element. 
Ring Type. 

Figure 5 shows one of t h e  va r i a t ions  of t h i s  type of e las t ic  element. It 
represents  a c i r c u l a r  p l a t e  with a ring-shaped r i b .  
t he  edge and has a r i g i d  c e n t r a l  port ion.  t o  which the  ex te rna l  load i s  applied.  
A s t r a i n  gauge i s  wound onto t h e  ring-shaped r i b .  Under the  inf luence 
of an ex terna l  force,  which w e  s h a l l  assume is  d i rec ted  downwards, t he  p l a t e  
undergoes deformation along with the  ring-shaped r i b .  
symmetrical with respect  t o  i t s  center .  It may thus be  r ead i ly  seen t h a t  t h e  
w i r e ,  which is  mounted onto the  lower sec t ion  of t he  r ing ,  w i l l  be  s t re tched ,  
and the  w i r e  mounted on the  upper sec t ion  of t h e  r ing  w i l l  be compressed. I n  
order  t o  avoid compression of t he  w i r e  on t h e  upper sec t ion  of t he  r ing ,  it 
must be  wound a f t e r  preliminary stress. i s  usual ly  
employed f o r  average loads (approximately from 500 t o  5000 kgf) .  

This p l a t e  i s  b u i l t  i n t o  

This deformation is  

This type of e las t ic  element 

For higher  l imi t ing  loads (up t o  tens  of tons)  elastic elements may be  
I n  t h i s  element, two cyl inders  employed which have t h e  form shown i n  Figure 6 .  

having a d i f f e r e n t  diameter are combined by means of a r ing  represent ing a 
beam having a s m a l l  curvature.  When the  e l a s t i c  element is  influenced by a 
compression load,  t h e  r ing  undergoes deformation, which is symmetrical with 
respect  t o  its center ,  i n  such a way t h a t  t he  t ransverse  cross  sec t ions  of t h e  
r ing  tu rn  with respect  t o  t h e i r  centers  of grav i ty ,  and t h e  longi tudina l  f i b e r s  
simply elongate  o r  compress. The s t r a i n  gauges are wound onto t h e  outer  
sur face  of t he  r ing  as w a s  done previously,  and a l l  statements per ta in ing  t o  
t h e i r  operat ion which w e r e  presented i n  the  preceding case remain i n  force  here.  

5 



The same pr inc ip l e  i s  employed f o r  

Figure 7 shows an ele- 
e las t ic  elements designed f o r  s m a l l  
l im i t ing  loads. 
ment represent ing a beam construct ion 
which de f l ec t s .  The s t r a i n  gauge 
is wound onto dowels, which tu rn  
when the  beam i s  def lec ted ,  and t h e  
w i r e s  have a supporting function. 

Figure 5. Elastic Element i n  t h e  
Form of a Ci rcu lar  P l a t e  with a 
Concentric Rib. s m a l l  loads,  can t i levers  having a 

I n  conclusion, w e  would l i k e  t o  
s ta te  t h a t  f o r  several loads,  including 

constant and va r i ab le  cross  sec t ion  ( i n  
t h e  l a t t e r  case, they are beams having 

the  same res i s tance)  with sensing elements a t tached t o  them (Figure 8) are very 
widely employed. 

r 

Figure 6 .  
Form of a Body of Rotation. 

Elastic Element i n  t h e  

Very f e w  articles have been 
published which are devoted t o  
designing elastic tensometric 
elements and which take i n t o  account 
c e r t a i n  requirements imposed upon them. 
W e  are not  including the  widely known 

Figure 7.  Elastic Element Designed 
t o  Measure S m a l l  Loads. 

works 
s implest  form which are employed as e l a s t i c  elements ( fo r  example, r ings ,  beams, 

on the  design o f  elements having the  

e t c . ) .  Most of t h e  l i t e r a t u r e  is descr ip t ive  i n  nature .  - / l o  
The s p e c i a l  fea tures  en ta i l ed  i n  designing e las t ic  elements are most c l ea r ly  

apparent when nonl inear i ty  i s  taken i n t o  account. The works of Dyatlov, V. Ya .  
Migdzinskiy, Ye .  P. Popova (Ref. 13) ,  P . I .  Semenova, A.M. Frakter  have been 
devoted t o  designing e l a s t i c  systems with allowance f o r  nonl inear i ty .  
s tud ie s  pr imari ly  inves t iga t e  the  f l e x i b l e  elements of instrument manufacture 
p a r t s ,  whose nonl inear i ty  i s  so  g rea t  t h a t  i t  cannot be disregarded. 

These 
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With respect t o  e las t ic  tensometric elements, t h e  nonl inear i ty  f o r  them 
leads t o  the  so-called systematic e r ro r .  I f  the f a c t  is taken i n t o  account t h a t  
the permissible l imi t ing  e r r o r  of scales o r  of a fo rce  measuring device i s  
s o m e t i m e s  so s m a l l  t h a t  i t  does not exceed 0.1 o r  0.05%, i t  is  then clear t h a t  
w e  m u s t  take i n t o  account nonl inear i ty  even i n  those r i g i d  systems which are 
usual ly  regarded -as l i n e a r .  

Figure 8. Elastic Elements of t h e  Cantilever Type. 

I n  t h i s  connection, w e  would l i k e  t o  point out the following. 
impossible t o  character ize  the nonl inear i ty  by the  f i r s t  nonlinear expansion 
term, as is customarily done, s ince  the ac tua l  e r r o r  caused by the  nonl inear i ty  
i s  many times less. 
scales o r  a force measuring device leads t o  the  f a c t  t h a t  t he  systematic e r r o r  
i s  e i t h e r  minimal, o r  i s  close t o  being minimal. Therefore, i t  is n a t u r a l  t o  
character ize  the nonl inearf ty  by the  magnitude of the l a r g e s t  deviat ion of t he  
nonlinear r e l a t ionsh ip  from the  l i n e a r  dependence, under the  condition t h a t  the 
b e s t  approximation i s  made. 

It i s  

This may be explained by the  f a c t  t h a t  the con t ro l  of 

Since the accuracy of tensometric s ca l e s  i s  very high a t  the present t i m e ,  
the  development of tensometric force measuring devices tends primarily toward 
searching f o r  the optimum forms of e l a s t i c  elements with the highest  possible  
metrological propert ies .  A s  a r u l e ,  t h i s  leads t o  complication of t he  construc- 
t i o n  of t he  e l a s t i c  elements. Naturally,  under these conditions the r o l e  of 
calculat ions is g rea t ly  increased. 
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Chapter I 

SENSITIVITY, RIGIDITY, AND STRENGTH OF ELASTIC ELEMENTS 

The s e l e c t i o n  of e f f i c i e n t  dimensions and form of an elastic element 
represents  one of the fundamental problems i n  designing a force measuring device. 
The stress a t  the  locat ion where the  s t r a i n  gauge is glued on o r  i s  wound on 
must provide a high s i g n a l ,  and consequently s u f f i c i e n t  s e n s i t i v i t y ( l )  of the 
elastic element, The stress cannot exceed the  y i e l d  point a t  any loca t ion  on 
the  elastic element, i .e.,  it must provide t h e  r e q u i s i t e  reserve of s t rength.  

/11 

The elast ic  element must have as much r i g i d i t y  as possible ,  s i n c e  -- when 
b u i l t  i n  t o  any device -- it  must not d i s tu rb  its operation. b, addi t ion,  a l l  
other  conditions being equal, t h e  more r i g i d  i s  t h e  elastic element, t h e b e t t e r  
are its metrological propert ies .  

This i nd ica t e s  t h a t  s p e c i a l  a t t e n t i o n  m u s t  be given t o  designing f o r  s t r eng th  
and r i g i d i t y  of e las t ic  elements. The requirements imposed on the  accuracy of 
these designs cannot exceed those which are customarily imposed on designs f o r  
machine construction , p a r t i c u l a r l y  due t o  the f a c t  t h a t  the possible  control  
of s e n s i t i v i t y  i s  usually included i n  a secondary device. Due t o  t h i s  f a c t ,  
a l l  the problems presented i n  t h i s  chapter are regarded i n  the  l i n e a r  formulation. 

1. E l a s t i c  Elements Representing Shaft-s which Elgngate o r  
Compress 

The operation of t h i s  type of e l a s t i c  element i s  shown i n  Figure 1. This 
is one of t h e  most widely employed e l a s t i c  elements, and is  customarily used f o r  
high l imi t ing  loads. 

The ca l cu la t ion  of a s h a f t ,  which represents the s e n s i t i v e  element of - 112 
t h i s  force measuring device, is extremely simple and i s  based on the  following 
formula 

However, it is p r a c t i c a l l y  impossible t o  provide a uniform stress state, 
described by formula (1.1) : the  point a t  which the  force is applied..never lies 
s t r i c t l y  on the  longi tudinal  a x i s  of the beam due t o  unavoidable s t r u c t u r a l  
imperfections, and the  d i r ec t ion  of inf luence of t he  force always makes a 
s m a l l  angle with the beam axis .  
verse forces  and moments a r i s e  i n  e l a s t i c  elements which elongate o r  compress. 

This leads t o  the f a c t  t h a t  considerable t rans-  

The s t r a i n  gauges forming t h e  bridge are fastened and combined i n  such a 

_ _  - - - ~- - 

(l’The quantity c = di designates the  s e n s i t i v i t y  of an e l a s t i c  element, 
dP 

where i is any quant i ty  character iz ing the  s i g n a l  from the sensing element. I n  
p a r t i c u l a r ,  i m a y  be the  magnitude of the deviat ion of t he  secondary device in- 
d i ca to r .  
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way t h a t  t he  secondary device does not react t o  t ransverse forces  and moments. 
For seve ra l  reasons (inaccurate attachment, a c e r t a i n  difference i n  the  coeff i -  
c i e n t s  of s t r a i n  s e n s i t i v i t y ,  etc.), the ac t ion  of t h e  t ransverse forces  and 
moments has an influence upon the reading of t he  secondary device. 
be avoided as much as possible ,  s ince  t h e  stresses caused by these forces  -- 
combining with t h e  stresses from t h e  t e n s i l e  (compression) forces  -- may introduce 
s i g n i f i c a n t  e r r o r s  i n t o  the measurement. 

This must 

The simplest  way t o  decrease the  e r r o r s  cons i s t s  of employing a hollow 
cyl inder  as the  e las t ic  element. 
and has the  same transverse cross sec t ion  area as a s o l i d  cyl inder ,  bu t  a much 
higher moment of res is tance.  
equal, the stresses caused by de f l ec t ion  i n  such an elastic element are consider- 
ably less than i n  a s o l i d  cylinder.  

This cyl inder  simply elongates o r  compresses, 

As may be r ead i ly  seen, other  conditions being 

Figure 2 shows another method which i s  more r a d i c a l ,  but  s t r u c t u r a l l y  more 
complex than t h a t  described above ( t h e i r  concurrent use i s  not excluded). This 
method may be employed i n  e l a s t i c  elements. I n  order t o  e l iminate  the  stresses 
from the  t ransverse forces  and moments, the e las t ic  element is mounted i n  a 
r i g i d  housing with one o r  two membranes having g rea t  r i g i d i t y  under the  inf luence 
of force i n  the  membrane plane,  and having l i t t l e  r i g i d i t y  under the inf luence 
of forces  and moments def lect ing the membrane. Thus, t h i s  compensating device 
receives a s m a l l  por t ion of t he  measurable stress, almost without changing the 
s e n s i t i v i t y  of t he  force measuring device, and almost completely receives the  
t ransverse components of t he  ex te rna l  stress and moment. A compensating device 
with two membranes i s  p a r t i c u l a r l y  e f f i c i e n t .  A l a r g e  number of membranes i s  
not usually used, s ince  t h i s  g rea t ly  complicates the manufacture of t h e  e las t ic  
element, and very l i t t l e  add i t iona l  advantage is gained. 

Final ly ,  t h e  influence of the stresses from the  t ransverse forces and - 113 
moments is compensated by a d e f i n i t e  arrangement of the s t r a i n  gauges forming 
t h e  electric bridge on the e las t ic  element. 
i n  a r i g i d  housing, the problem of the  e f f i c i e n t  construction of t he  membrane 
supports arises. 
verse  forces  and moments on the  elastic element i s  as s m a l l  as possible.  The 
e f f i c i e n t  s e l e c t i o n  of s t r u c t u r a l  dimensions of fo rce  measuring device elements 
i s  invest igated i n  the s t u d i e s  (Ref. 2) and (Ref. 2 4 ) .  

When an e l a s t i c  element is placed 

This must be done i n  such a way t h a t  t h e  inf luence of t he  trans- 

The ca l cu la t ion  of force measuring device elements of t h i s  type is discussed 
below, with c e r t a i n  r e q u i s i t e  changes and additions.  For t h i s  calculat ion,  i t  
is  f i r s t  necessary t o  know the r i g i d i t y  of t h e  membrane forming the  bas i c  ele- 
ment of t h e  compensating device. I n  addi t ion,  t h e  membranes must be designed 
f o r  s t rength.  

Thus, we  s h a l l  begin an examination of compensating devices by ca l cu la t ing  
the  membranes, representing the. p l a t e s ,  which are loaded by forces  and moments 
i n  t h e  center.  

Calculation of a Circular  P l a t e  Under the  Influence of an 
Arbi t rary Sys tem of Forces Applied a t  t he  Center 
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As may be seen from Figure 2 ,  t h e  membranes, which compensate f o r  t h e  
t ransverse stresses and bending moments, are b u i l t  i n  along t h e  edge, have a 
s o l i d  c i r c u l a r  center ,  and are loaded i n  the  middle -- i n  t he  f i r s t  case, by 
two components of t h e  ex te rna l  force,  one-of which acts i n  the  plane of t he  
p l a t e ,  and the other  acts perpendicularly t o  it; i n  the second case, they are 
loaded by the  moment. 

L e t  us study the inf luence of t h e  force i n  the  plane of t he  p l a t e  (Figure 
Under the inf luence of t he  fo rce  P ,  t he  s o l i d  center  is  displaced by the  

quant i ty  6 .  W e  s h a l l  employ u t o  

designate t h e  displacement of an arbi-  
t r a r i l y  selected point i n  the  r a d i a l  
d i r ec t ion ,  and u t o  designate i t  i n  * 
t he  t angen t i a l  d i r ec t ion .  W e  s h a l l  
employ the  so lu t ion  of t he  second 
fundamental problem of e l a s t i c i t y  theory 

(v=$ (Ref. 25).  W e  have the  following 

A 

9 ) .  

P 

L expressions f o r  t he  stress: 
I 

A 

A 

and T are the stresses 
P '  a* 

Figure 9. Influence of t he  Force i n  where u 
t h e  Plane of t he  Plate.  which are customary i n  the case of a 

plane stress state;  p and I/J -- coordinates 
of t he  point  i n  t h e  polar  coordinate system. 

The quan t i t i e s  A, c1 and fl have the  following form: /14 

where G i s  the  modulus of e l a s t i c i t y  of t he  second kind. 

The quant i ty  IC is  as follows i n  the case of t he  plane stress s t a t e  
3 - v  

(1.3) x = -  
1 + v '  

and is  the  following i n  t h e  case of plane deformation 

x = 3 -  4% 
where v is  the Poisson coe f f i c i en t .  

L e t  us w r i t e  t he  expressions f o r  the displacements 
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+ 2Ra r2R' 
pz - - + T ) ]  sin 9. r r'+R* x 

R 

The quant i ty  6 i s  contained i n  a l l  the expressions given above f o r  the 
stresses and displacements. 
which w i l l  be  necessary la ter  f o r  t he  p Z i a b i Z i t y  of the eZastic system, i .e.,  
t h e  displacement from the  un i t  force which is i n  operation i n  the  d i r ec t ion  of 
t he  force P ,  

/15 
Dividing i t  by the  force P, w e  obtain the  value 

8 A = -  
(1 4 )  P '. 

W e  may determine the quant i ty  6 
from the equilibrium condi t ion of t he  
s o l i d  c e n t r a l  sect ion.  L e t  us s epa ra t e  
the c e n t r a l  s ec t ion  having t h e  radius 
r ,  l e t  us discard the ex te rna l  s ec t ion  
of t he  p l a t e ,  and l e t  us replace the 
influence of t h e  discarded sec t ion  on 
the  remaining sec t ion  by the  forces  
which i n  t h i s  case represent the stresses 
(5 and T d i s t r i b u t e d  over t he  cy l ind r i ca l  

surface having the radius  r (Figure 10). 
I n  t h i s  case,  t he  d i f f e r e n t i a l  of t he  
force P has the  following form: 

dp -=ap!F-ccos+---i-dF.sint+ 

' F  P 

Figure 10. Equilibrium of the 
Element Separated from the  P l a t e .  

Subst i tut ing the expressions (1.2) 

P 
f o r  (5 and T and in t eg ra t ing  over the 

e n t i r e  c y l i n d r i c a l  cross sect ion,  w e  obtain 

where 

W e  thus f ind  the quant i ty  6 
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Subst i tut ing t h i s  expression f o r  6 i n  formula (1.2) and taking i n t o  account 
t he  values of t h e  c o e f f i c i e n t s  A, c1 and B ,  we f i n a l l y  obtain 

I n  conclusion, l e t  us write the expression f o r  determining the displace- /16 
ment of t h e  center of the membrane 6 under t h e  influence of a u n i t  force,  which 
w e  w i l l  need later on. 
P = 1, w e  obtain 

Subst i tut ing equation (1.3) i n  formula (1.6) and s e t t i n g  

(1.6') 

The second component of t he  ex te rna l  force,  which has an inf luence perpen- 
The ca l cu la t iona l  diagram is dicular  

shown ia Figure 11. 
t h e  study (Ref. 16)] .  
der ivat ion.  

t o  the plane of t h e  p l a t e ,  d e f l e c t s  it. 
The so lu t ion  of t h i s  problem is w e l l  known [see, f o r  example, 

W e  s h a l l  present t he  fundamental formulas without t he  

/ 

--@ 
td- 

Figure 11. 
Applied at the  Center Perpendicularly 
t o  the  Plane of the P l a t e .  

Influence of the Force 

The maximum de f l ec t ion  may 

Figure 12. Influence of t h e  Moment 
Applied a t  the Center of t he  P la t e .  

be determined according t o  the  
following formula 

The l a r g e s t  r a d i a l  and t angen t i a l  bending moments ( i n  t h e  case p = r )  have 
the  following form 

P M, = - 
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L e t  us now inves t iga t e  i n  g rea t e r  d e t a i l  the case of de f l ec t ion  of t h e  

L e t  us w r i t e  t h e  so lu t ion  i n  

__ 117 
p l a t e  by a moment applied at  the  middle of t h e  r i g i d  center . ( l )  
may be solved most simply by the  Clebsch method. 
t he  form of the  following series 

This problem 

co co 

v = R, + Z F m c o s m +  + 2 R; sin mq. 
m= 1 IJl=l 

I n  our case, the  boundary conditions have t h e  following form 

f o r  p = r t h e  displacement . dv v v = uocos 9, - = - - 
dP P ' 

do 
f o r  p = R the  displacement CJ = 0, - - - 0. 

dP 

(I. lo) 

It is apparent t h a t  only one term of the  series (I.lO), containing the 
cosine and the corresponding value m - 1, s a t i s f i e s  these boundary conditions 

( I .  11) 
v = R, cos 9. 

I n  order t o  determine R w e  have t h e  w e l l  known d i f f e r e n t i a l  equation f o r  1' 
de f l ec t ion  of a p l a t e  

Subst i tut ing expression (I. 11) and performing in t eg ra t ion ,  w e  obtain 

(I. 12) 

C2,  C and C w e  1' 3 4' I n  order t o  determine t h e  four  a r b i t r a r y  constants C 

have four  conditions a t  the boundaries of t he  p l a t e :  

(r2 - R2) + 2 (Rz + r2)  In R c 1 -.. -uo . 
2' (R2 - rz) + (Ra + r2) In TI ' r 

00 

1 
c, = - 

c, = vo 

% [ ( ~ 2  - '2) + (RZ + r2) In - 
R' - r 

2 [ ( ~ 2 - , 2 ) + ( ~ * + r z ) i n  %- 'I ' 

R 'I' 

This problem has been s tudied by seve ra l  authors -- f o r  example, F.M. 
Dimentberg ("Vestnik Inzhenerov i Tekhnikov'; No.  7, 1938), H. Reissner 
("Ingenieur-Archiv" , N o .  1, 1929) . 
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Subs t i t u t ing  these values i n  formula (1.12), we obtain /18 
- [ (RZ + r2) p In 1. + v =  00  

R 
(1.13) r [ (Ra - r 3  + (R2 + r2) In $1 

W e  may f ind  the  

r i g i d  sec t ion  of t h e  
of F. M. Dimentberg; 
following form 

expression f o r  v 

p l a t e  (more de t a i l ed  computations are given i n  t h e  study 
see the reference-on page13) .  The f i n a l  r e s u l t  has t h e  

from the equilibrium equation of t h e  0 

The angle of r o t a t i o n  of t he  r i g i d  sec t ion  equals 
00 

- 2  
0 =,-. 

(1.14) 

(I .'15) 

I n  order t o  obtain the  compliance of t h e  p l a t e  -- i f  by compliance w e  mean 
the  angle of r o t a t i o n  of t h e  r i g i d  sec t ion  under the  inf luence of a u n i t  moment 
i n  t h i s  case -- we must divide t h i s  value of 6 by the  magnitude of t h e  moment 
M 

(1.16) 

The values of the r a d i a l M  and the t angen t i a lM 
P JI 

bending moments may be 

determined according t o  t h e  following formulas: 

(I. 173 

Elastic Element having Constant Cross-Sectionwith Two Membranes 

The force measuring device element shown i n  Figure 13 cons i s t s  of t h e  
housing 3 ,  t he  sha f t - l i ke  e l a s t i c  element 4, and the j acke t  5 with the membranes 
1 and 2. The t ransverse stress P and the  moment M influence the  force 

measuring device element. Figure 14 shows an equivalent diagram of the  j a c k e t  
of t he  force measuring device element, and Figure 15 presents  t he  ca l cu la t iona l  
diagram of t h e  elastic element. 

e e 

This construction is  s t a t i c a l l y  indeterminate. The force f a c t o r s  P e '  /20 
X and. X2 (Figure 14) inf luence t h e  'jacket 5 with the membranes '1 and 2. L e t  1 
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3 2 1 

Figure 13. Force Measuring Element Figure 14. Equivalent Diagram of 
with Two Membranes. Compensating Device. 

us inves t iga t e  the  inf luence of t he  force Pe separately.  

A 

of t h i s  force.  

moments i n  operation i n  the  supporting membranes. 

L e t  us employ A1 and 

and M ‘be the  corresponding r eac t ive  forces  and 

t o  designate the  vertical displacements of the membranes under the  influence 

L e t  P1, P2, M 
2 

1 2 

Under t h e  inf luence of t he  force Pe, both membranes and the  jacket  are 

deformed, with the  exception of the sec t ion  qs ,  which may be assumed t o  be 
absolutely r i g i d  with a g rea t  degree of accuracy. 
and employing letter c t o  designate t h e  coordinate of the po in t ,  with respect  
t o  which r o t a t i o n  occurs, w e  can r ead i ly  see t h a t  t he  angles of r o t a t i o n  of 
membranes 1 and 2 -- formed by the elastic l i n e  with the  i n i t i a l  ax i s  qw -- 
equal t h e  following, respect ively 

After  examining Figure 16 

I n  these expressions,  deformation of the 
On t h e  other  hand, w e  have 

0, = M,s, 

0 2  = M2sa 

(1.18) 

s ec t ion  ns  is  taken i n t o  account. 

(I. 19) 

where O 1  and 9 

under t h e  inf luence of t he  u n i t  moment. 
formula (1.16). 

are t h e  angular displacements of membranes 1 and 2,  respect ively,  

These q u a n t i t i e s  may be determined by 

Equating formulas (1.18) and (1.19), w e  obtain the  following expressions 
f o r  t h e  moments i n  operation i n  t h e  supporting membranes: 

(1.20) 
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(I. 20) 

where E J  is  the  j acke t  r i g i d i t y .  

L e t  us determine t h e  quan t i t i e s  contained i n  equation (1.20). Based on 
the  s i m i l a r i t y  of t h e  . t r iangles  (Figure 16) ,  w e  r ead i ly  f ind  

C =  

Figure 15. Equivalent Diagram of 
the  Elastic Element. 

The vertical  displacements 
and A2 are determined by t h e  A 

following r e l a t ionsh ips  
1 

(I .  21) 

-[- I I 
A1 = Pl - 8,; & A 
A, = P2 - a,, 

Figure 16. Diagram of t h e  S t r e s s  of 
where 61 and 62  are the  r r a n p l i q c e s  t he  Compensating Device. /21 
of membranes 1 and 2 under the  
inf luence of the force lying i n  the  plane of the membrane. 
may be expressed by the  formula (1.6'). 

These q u a n t i t i e s  

Subst i tut ing equations (1.21) and (1.22) i n  expression (1.20) and perform- 
ing c e r t a i n  s impl i f i ca t ions ,  w e  obtain 

1 M1= - 
I 9, 3EJ 

3EJ .2EJ 
1 M, = - -- ( p ,  . r:,+p,.8,+ 

1 . 9 2  \ 

(1.23) 

W e  can r ead i ly  obtain the r eac t ive  forces  P and P (see Figure 16) from 1 2 
t h e  equilibrium conditions of t h e  j acke t :  

a3 

( I .  24) P1 = Pe 
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d - L - k  
1.8, 1.8, 

(I. 24) P 2 =  P e  
1 a3 a=1 

Utilizing expression. (1.24), we may write the reac,tive moments (1.23) in 

a 1 - a .  ‘ P, =XI - -; P2 = XI - 
I 1 ’  

p, z - pz = x , L  - 
1 ’  

(I. 25) 

For real elastic elements, the last two terms in the numerator and denominator 
of expressions (1.24) are 100 times smaller than the quantities R and d, as - 122 
numerical calculations illustrate. 
following expressions for reactive forces 

Disregarding these terms, we obtain the 

(1.26) 

It thus follows that i n  engineering caZcuZations t h i s  type o f  compza 

Thus, the support .reactions may be determined by expressions 
construction may be repZaced by a hinged beam having a va.r-6abZe cross section 
(Figure 17). 
(1.26). 

Formulas similar to equations (1.24) and (1.25) may be obtained for the 
force X1 and the moments X and Me. Based on-the same considerations, the 
reactions due to these forces and moments may be determined from the computa- 
tional diagram shown in Figdre 17, 

2 

(I. 27) 
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I 1  I 

I n  order t o  determine the  de f l ec t ion  and angle of r o t a t i o n  a t  t he  point s 
element is connected with ehe compensating device, we may where the  s e n s i t i v e  

employ the  p r i n c i p l e  of superposit ion.  
t i o n  of such a hinged beam a t  the point  s due t o  the 
Pe, X1, X2 and Me, respect ively,  may be determined by the  following expressions, 

The displacements and angles of rota- 
influence of the loads 

( I .  28) /23 

The t o t a l  de f l ec t ion  and angle of r o t a t i o n  a t  the  point s have t h e  follow- 
ing form: 

1-a  

3EJ 
1-a 

(1.29) 
)]; 

d - a* 

+ + 2 r ( z - , u ) 8 2 - u .  X ( i - ~  1 + 
l2 L 3EJ 1 

' a* 
i 

L e t  us determine t h e  displacement and angle of r o t a t i o n - a t  the same point  
d of an elastic element due t o  t h e  inf luence of t h e  force X and t h e  moment X2: 1 - 

( I .  30) 
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where EJKs is the rigidity of the elastic element in the case of deflection, 
and R is its length. 1 

Based on the compatibility of the displacements of the jacket and the 
elastic element at the point s, we may determine the unknown force Xi and the 
moment X equating the expressions (I. 29) and (I. 30) , respectively , ‘and solving 
the equations obtained concurrently. 
accuracy, we may perform certain simplifications, employing the fact that the 
ragidity of the jacket with the membranes under the influence of the force fact- 
ors X1 and X2 significantly exceeds the rigidity of the elastic element under the 

2’ 
Without any loss to the computational 

influence of the same factors X1 and X2. /24 
In other words, the following inequalities hold 

( I - a )  a3 . 
3EJ 1 ’ (Z-a)6,-aas1f 1; 

2 E J t c S  

On the basis of inequalities (1.31) , we 
bility of deformation and angles of rotation 
form: 

(1.31) 

may write the condition for compati- 
at the point s in the following 

(I. 32) 

The solution of system (1.32) yields the desired values of the force X1and 
the moment X2 
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'A 
MA = X I - x ,  l, 

( 1 . 3 3 )  

Fi,ure 17. Simplified Diagram of Figure 18. Diagram of Bending Moments 
the  Compensating Device. qf an Elastic Element. 

Figure 18 shows a diagram of t h e  bending moments of an elastic element 
due t o  the inf luence of t h e  fo rce  X1 and the  moment X2. 

gauge i s  glued on a t  the  place where the bending moment equals zero. 
pression f o r  t he  bending moment has t h e  following form 

A r e s i s t ance  s t r a i n  

The ex- 

( I .  34)  
where the  lever ann x is  read from t h e  f r e e  end of t he  e l a s t i c  element (see 
Figures 15, 18). 

M, = Xz - XI . X ,  

W e  thus r ead i ly  f ind  t h a t  Mx = 0 i n  the  case x = x2 . When the re  is no 
XI 

ex te rna l  moment Me expressions ( 1 . 3 3 )  assume the  following form 

x, = Pee 12EJKs ((t + +) [(t  + a + d) a1 + 
1; (f + a)* 

da3 
dsz f ~ E I ]  - (t 4- a) ( t  + a + d) h1) ; 

x -P  l 2  * EJus {(si4 -$) [(t  + a + d )  6, + I - 1: (f +a)2 

( 1 . 3 3 ' )  

I +&, ; "'] ( f + a ) ( f + a + d ) a l  
3 E J .  2 

L e t  us i nves t iga t e  a numerical example. L e t  a = 4 cm, d = 2 cm, R = 9 cm, 
R1 = 6 UU, E J  = 1 2 1  10kgf a*; EJks = 4 1 0 h f  m 2 ;  61 = 0.72 10-6 cmkgf; 
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62 = 0.944 cm/kgf; P = 3000 kgf;  Me = 0. e 
We may determine X = 82.3 kgf and X2 = 4.99 kgf from equations (1.33'). 

Figure 19 shows graphs present ing the change i n  the end moments M A  and MB as 
1 

1 

-.-? 

a funct ion of t he  j acke t  length a. 

I4 16 a m  
I 

L e t  us determine what por t ion  of t h e  ex te rna l  moment P d belongs t o  t h e  e 
elast ic  moment. 

-_-- - 0,08, maxM, - 499 
Pea d 3000 * 2 

i .e.,  t h i s  por t ion  is s m a l l .  

When t h i s  type of elastic element is designed, it is of g rea t  i n t e r e s t  t o  
select t h e  optimum value of t h e  q u a l t i t y  a. As w a s  indicated above, a s t r a i n  
gauge is  usual ly  glued on i n  such .a way t h a t  i t s  middle coincides with t h e  
e las t ic  element cross  sec t ion  i n  which t h e  bending moment equals zero. I n  
t h e o r e t i c a l  terms, t h e  s i g n a l  from t h e  s t r a i n  gauge, produced by t h e  ac t ion  of 
t h e  bending moment, must equal zero. However, i n  p rac t i ce ,  due t o  imperfect 
mounting and several o ther  reasons,  t he  secondary device reacts t o  t h e  inf luencef i  
of t h e  bending moment. Thus, w e  must attempt t o  see t h a t  t h e  stresses a r i s i n g  
from t h e  inf luence of t h e  bending moment are minimal i n  terms of absolute  magni- 
tude,  under the  condition t h a t  t h e  c ross  sec t ion  i n  which the  bending moment 
equals zero coincides with the  middle of t h e  s t r a i n  gauge which is  glued o n .  
This requirement leads t o  a minimum angle of i n c l i n a t i o n  f o r  t h e  curve of t h e  
bending moments, under t h e  condition t h a t  t he  poin t  a t  which t h e  bending moment 
equals zero l ies  within a d e f i n i t e  i n t e r v a l ,  i . e . ,  under t h e  following con- 
d i t i o n  

where Aa is t h e  base length  of the s t ra in  gauge. 

Figure 19. Graph Showing 

MA 

(1.35) 

t h e  Change i n  t h e  End Moments 
and MB 
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I n  addi t ion,  the following condition must be s a t i s f i e d  based on s t r u c t u r a l  
considerations 

a < 4. (I. 36) 

Conditions (1.35) and (1.36) enable us t o  f i n d  the i n t e r v a l  of values f o r  
a within which the  angle of i n c l i n a t i o n  f o r  t h e  curve of t he  bending moments is 
minimal. 
f inding t h e  minimum I X 

of conditions (1.35) and (1.36). 

It may be r ead i ly  es tabl ished t h a t  t h i s  problem may be reduced t o  
I i n  t he  i n t e r v a l  of values f u r  a determined by means 1 

For t h e  given numerical example, condition (1.35) w i l l  have the following 
form i f  w e  set Aa = 3 cm: 

4.5 c m >  x2 > 1.5 a, 
X1 

from which w e  approximately f ind  /27 
- 1,92 c.+i\<a\< 10,7 m. 

Taking condition (1.36) i n t o  account, w e  f i n a l l y  obtain the  i n t e r v a l  of 
changes i n  the  values of a: 

-1.92 c.+i<a<6 CX.  

L e t  us f ind  t h e  .minimum I X1 I. For t h i s  purpose, le t  us d i f f e r e n t i a t e  
/ 

equation (1.33') f o r  X with respect  t o  a, and let  us set t h e  equation obtained 1 

( I .  37) 

For our example, t he  discriminant of t h e  equation is g r e a t e r  than zero. 
Consequently, t h e  equation has only one real root  which equals 10.36 cm. Based 
on t h e  p o s i t i v e  s i g n  of t he  second de r iva t ive ,  w e  can see t h a t  w e  have found 
t h e  minimum. Since t h e  value obtained does no t  l i e  within the  i n t e r v a l  of 
changes i n  a, t he  minimum value may be w r i t t e n  a t  t h e  ends of t he  i n t e r v a l .  
Performing calculat ions,  w e  f ind:  i n  the case a = - 1.92 cm, t he  fo rce  X = 

= 7100 kgf; i n  the case X1 = 7100 kgf,  t he  fo rce  X1 = 85.4 kgf. 
1 

Consequently, w e  may s e l e c t  the length of t he  j a c k e t a  as a l i t t l e  less 
than 6 cm. 

I n - a  similar way, w e  may solve the problem regarding the optimum value of 
t he  q u a n t i t y a  when the  moment M influences the  elastic element, i n  addi t ion 

t o  the  force Pe. 

t h e  minimum of X1, has the following form i n  t h i s  case 

e 
The cubic equation, determining t h e  optimum value of a f o r  
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where 
(1.37’) 

WS = (t  + d) 6, + d * 62; 

2% . o4 = 23, + - , 
4 t + -  
2 

d 2 
3 

). = - 

E l a s t i c  Elements Having Constant Cross Section with One Membrane - 128 

This type of force measuring element (Figure 20) cons i s t s  of t he  housing 
1, the  sha f t - l i ke  elastic element 2 ,  and the membranes 4 with a c e n t r a l  r i g i d  
sec t ion  3.  In  terms of its construction, t h i s  element is simpler than the 
preceding element. 
is less e f f e c t i v e  here.  J u s t  as i n  t h e  preceding case, t h i s  construction is 
s t a t i c a l l y  indeterminate. 

However, t he  compensation of the t ransverse forces  and moments 

Figure 2 1  shows an equivalent diagram of a membrane with a c e n t r a l  r i g i d  
sect ion.  The ca l cu la t iona l  diagram of t he  elastic element i s  the  same as i n  the 
case of two membranes (see Figure 15). 

Figure 20. Force Measuring Element Figure 21. Equivalent Diagram of 
with One Membrane. Membrane with Central  Rigid Section. 

The v e r t i c a l  displacement A o f t h e  c e n t r a l  r i g i d  sec t ion  a t  the point s 
equals 

A = A, + ae, (I. 38)  
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where A is  a displacement of t he  membrane from t h e  inf luence of t he  forces  i n  1 
its plane 

(1.39) 

6 i s  thecompliance of t he  membrane under t h e  inf luence of t he  fo rce  lying 
i n  its plane. The quant i ty  6 may be determined by t h e  expression (1.6').  

The angle of r o t a t i o n  of the c e n t r a l  r i g i d  sec t ion  equals 
e = (&a + X 2 -  P&- 41 8, (1.40) 

where 11) is the  angular compliance of the membrane. It may be determined by 
expression (1.16). 

The displacement and angle of r o t a t i o n  of t h e  elastic element at t h e  point  
s may be calculated from formulas (1.30). 

L e t  us compile the condition of compatibil i ty f o r  t he  displacements and 
angles of r o t a t i o n  a t  the point s of the e l a s t i c  element and the  membrane: 

/29 

(1.41) 

Solving system (1.41) with respect t o  the  unknowns X, and X,, we obtain 
I 

I n  p rac t i ce ,  t h e  following i n e q u a l i t i e s  always hold 

L 

(I. 42) 

(1.43) 
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Therefore, expressions (1.42) may be simplified: 

It may be seen from expressions (1.43) and (1.44) that, in order to decrease 
the force factors acting upon the elastic elements it is necessary to decrease 
the size d of the central rigid section of the membranes, and to increase as 
much as possible the length of the elastic element R1. 

Just as previously, the position at which the resistance strain gauges 
are glued on is determined from Mx = 0. Thebendkg moment may be calculated 
according to formula (1.34). 
the coordinate of the position at which the strain gauge is pasted on 

With allowance for expressions (I.34), we may find 
- 

x = 2 .  - 
X1 

(1.45) 

I t us investigate a numerical example. Let us t R = 6.0 cm, 5 = 1.5 cm, 
0 651 r = 1.46 cm, a = 1.0 cm, d = t.4 cm, h = 0.5 cm; R = 14 cm, 6 = -.m/kgf , 9  = 

=- 1.893 l/kgfm,Jks’ 3.02 cm , Pe = 2000 kgf,Me = 0, 
E - - 
Based on formulas (1.44) , we may determine X1 and X2: 

188 kgf ;x2 = 1650 kgf/m 
Comparing these quantities with the precise values of X1 = 178kgf and X2’= 

= 1650 kgf cm, obtained according to formulas (I.42), we can see that the diffe- 
rence is insignificant, and consequently formulas (1.44) may be recommended for 

25 



determining the  unknowns X and X2. 1 

W e  may determine the  pos i t i on  a t  which t h e  s t r a i n  gauge is glued on from 
expression ( I .  45) 

x=a,aa cM. 

Elast ic  Element Having Variable Cross Sectign-with Ong M-embrane 

I n  order t o  decrease the  stresses from the t ransverse loads, t he  elastic 
element i s  s o m e t i m e s  prepared i n  the form of a beam having a s t e p  cross  sect ion.  
Figure 22 shows a force measuring element consis t ing of t he  housing 1, the  
sha f t - l i ke  elastic element having a s t e p  cross sec t ion  2 ,  t he  c e n t r a l  r i g i d  
sec t ion  of t he  membrane 3 ,  and the  membrane i t s e l f  4. 

/31 

J u s t  as i n  the  case of a s h a f t  having a constant cross  sec t ion ,  we  may 
r ead i ly  compile the  equations of compatibil i ty which may be used t o  determine 
t h e  unknowns X and X 2' 1 

I 

Figure 22. Step Force Measuring Element Figure 23. Equivalent Diagram of 
with One Membrane. t h e  Step Elastic Element. 

The l e f t  hand s ides  of t he  equations of compatability are the  same as i n  equations 
(1.41). The r i g h t  hand s ides  d i f f e r  somewhat. L e t  us compare the expression 
f o r  de f l ec t ion  and the  angle of r o t a t i o n  of an e l a s t i c  element having a s t e p  
cross  sec t ion  a t  t he  point  s (See Figure 23):  

(1.46) 

The equations of compatibil i ty have the  following form 
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I 

-- Pe - d8- Me$ + X,a - 9 + X29 = 

We obtain the following from the system of equations (1.47) 

(1.47) 

(1.48) 

These expressions may be simplified, if we take the following inequalities 
into account 

which have the same physical meaning as inequalities (1.43). 

(1.49) 

/32 

With allowance for inequalities (I.49), we obtain the following approxi- 
mate expressions for X1 and X2: 
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(1.50) 

When e l a s t i c  elements uttb a s t e p  cross  sec t ion  are constructed, the length 
R is establ ished i n  such a way t h a t  s t r a i n  gauges may be arranged upon it. 

The coordinate of the pos i t i on  a t  which the s t r a i n  gauge is glued on may be 
determined, by analogy with t h e  preceding statements by means of t h e  following 
expression: 

1 

(1.51) 

Figure 24. 

a - of constant cross sec t ion ;  b - of va r i ab le  cross  sect ion.  

Diagrams of Bending Moments of Elastic Elements: 
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It may be r ead i ly  seen t h a t ,  i f  w e  set R 

(1.50) and (1.51) w e  then obtain the expressions (1.42), (1.44) and (1.451, 
respectively.  

= 1 and R1 = 0 i n  expressions (1.48), 2 

L e t  us i nves t iga t e  a numerical example with the same da ta  as given i n  t h e  
case of an elastic element having a constant cross  sect ion.  
s h a l l  set R1 = 8.0 cm, R2 = 6.0 cm and J2 = 1.56 cm4. 

I n  addi t ion,  we 

Based on formulas (1.50), w e  obtain:  
-- 
.% = 163 kgs; x2 = 1300 kgf /cm 

Comparing these values with the  p rec i se  values of X1 = 157kgf and X2 = 

= 1310 kgf cm, determined according t o  formulas (1.481, w e  can see t h a t  t he  
difference is s m a l l ,  and consequently w e  may employ expression (1.50) when 
ca l cu la t ing  the  unknowns X and X2. 1 

The coordinate of t h e  point a t  which the  s t r a i n  gauge is glued on may be 
found according t o  the  formula (1.51) 

x = 7 , 9 7  cat. 

/34 

Comparing the  diagrams of t he  bending moments i n  Figure 24 f o r  t he  examples 

w e  can see t h a t  i n  t h e  case of a s t e p  elastic element, the values of the bending 
mements are somewhat lower. 

under consideration (with elastic elementswith constant and s t e p  cross sec t ions ) ,  

Stresses  i n  t h e  Membranes of Force Measuring Elements 
- 

These stresses arise under t h e  inf luence of t h e  loads P Me, if, and X2. 

L e t  us i nves t iga t e  the  inf luence of t he  moments Me, z2 and the  forces  Pe, XI 
e - 

separately.  
inf luence of the ex te rna l  moments M 

The values of t he  r a d i a l  and-tangential bending moments 
and X2 have the following form: e 

where p and $ are 

The stresses 

M = M . p - z  [(1 + v) ?I!?- 
p 4x(R'+r2) P 

RW 
P 

+ (1 - v) 7]c0s qJ; 

t h e  coordinates of a point  i n  the  polar  system. 

due t o  these loads are as follows, respect ively:  

due t o  the 

(1.52) 

(1.53) 
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- 
The stresses due t o  t h e  inf luence of t he  forces  Pe and X1 may be determined 

by the  following expressions : 

(1.54) 

where h is t h e  p l a t e  thickness:  /35 

Based an  the  energy theory.of  s t r eng th ,  w e  may determine the  equivalent 
stresses i n  the membrane 

(1.55) 

where 

Qp =ap, +up*;. a J, - -. a +a +%,. 
The stresses w i l l  be a t  a maximum i n  t h e  case p = r and 6 = 0. 

L e t  us c a l c u l a t e  the maximum stresses i n  t h e  membrane f o r  t h e  example 
invest igated above ( i n  t h e  case of an elastic element having a constant cross 

' $  
sect ion)  : 

u = - 3740figffC~2; = - 4000 kgf /C;n 
Pl 

Influence of t h e  Compensgt- Device upon the  S e n s i t i v i t y  of 
the Elastic Element 

The membrane r i g i d i t y  influences t h e  s e n s i t i v i t y  of the e las t ic  element. 
The magnitude of t h i s  influence may be characterized by the r a t i o  of t he  fo rce  
X3, which the  membrane receives,  t o  the ex te rna l  longi tudinal  force P (see 

Figures 15 and 20). 
e las t ic  element. 

W e  s h a l l  ca l l  t h i s  r a t i o  the  loss of sensi t iv i ty  for  the 

This problem is s t a t i c a l l y  indeterminate. The condition of compatibil i ty 
f o r  deformation of the membrane due t o  t h e  force X3 and of the e las t ic  element 

due t o  the  force P - X3 has the  following form 
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o r ,  with allowance f o r  the expression (1.8), 

where F is  the  area of t he  s h a f t  t ransverse cross sect ion;  

For the numerical example invest igated above (See Figure 20), w e  may de- 
termine the fo rce  X 

= 0.3. Based on formula (1.57), w e  obtain 

received by the  membrane i n  the  case P = 15,000 kgf and v = 3' 

The s e n s i t i v i t y  l o s s  comprises 

100% = 2,5%, 
P 

which is f u l l y  permissible. 

2. Ela-sti-c. ElementsAn-the Form of a Ring 

Circular  elastic tensometric elements (Figure 25) are widely employed i n  
fo rce  measuring technology, due t o  the  s impl i c i ty  with which they may be manu- 
factured,  the convenience i n  mounting these s t r a i n  gauges, and a l s o  due t o  the  
f a c t  t h a t  i t  is very simple t o  design r ings  having a s m a l l  curvature. 
t h e  most s e r ious  drawbacks of these elastic elements i s  t h a t  they have g rea t  
nonl inear i ty:  t h e i r  elastic displacements change t h e  le\wy arms 
much more than t h e  displacements f o r  t h e  majority of other  types of elastic 
elements. This drawback leads t o  t h e  f a c t  t h a t  t h e  use of c i r c u l a r  elastic 
elements 
on t h e  force measuring device. 

One of 

i s  l imi t ed  t o  t h e  area of comparatively l o w  metrological requirements 

Depending on the  l imi t ing  load, t h e  c i r c u l a r  elastic element may be a beam 
with g r e a t  curvature,  o r  a beam with l i t t l e  curvature. The r a t i o  h is usual ly  

used t o  determine the  magnitude of curvature. 
e i t h e r  a constant cross  sec t ion  o r  a var i ab le  cross  sect ion.  

Ro 
I n  addi t ion,  t he  r ing may have /37 
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Figure 26. Calculat ional  Diagram. 

Figure 25. 
Circular  Type with Rigid Sections on 
the Vertical Axis. 

Elastic Element of t he  

s a t i s f a c t o r y  t o  have 10% accuracy, then 
be employed even f o r  the case h = 1 . 

R o 5  

L e t  us f i r s t  i nves t iga t e  t h e  
simplest  case when the elastic element 
respresents  a r ing  having a constant 
cross  sec t ion  with a s m a l l  curvature. 
As is  w e l l  known, i f .  t he  quant i ty  
- = -  , the  use of formulas f o r  a Ro 20 
s t r a i g h t  beam leads t o  an e r r o r  which 
does no t  exceed 4%. However, i f  i t  is 
t h e  formulas f o r  a s t r a i g h t  beam may 

Elastic elements of t h i s  type are usually used f o r  measuring l imi t ing  
loads ranging between 50 - 500kgf. Calculations have shown t h a t  f o r  loads 
less than 50 Jcgfelastic elements are produced having very s m a l l  geometric 
dimensions, s o  t h a t  t h e  mounting of t he  s t r a i n  gauges is complicated. 
t i o n ,  t h e  dimensions of t h e  r ing  t ransverse cross sec t ion  become comparable 

with the  displacements leading t o  a g rea t  increase i n  the  nonlinearity.  For 
loads above 500 kgf the  r ing  i s  made s o  th i ck  t h a t  t h e  calculat ions must be 
based on the theory of a beam with l a rge  curvature. 

In  addi- 

I n  p rac t i ce ,  a c i r c u l a r  element cannot always be designed.  based on the  
w e l l  known formulas f o r  a r ing  having a constant cross sect ion.  The supporting 
sec t ions  serving t o  support t h e  r ing and apply the  measurable stress lead t o  
the necessi ty  of t he  r i g i d  sec t ions  2 (Figure 25). In  addition, the construc- 
t i o n  of t h e  e l a s t i c  element provides f o r  t he  membrane 1 which has the same 
purpose as i n  the  sha f t - l i ke  e l a s t i c  elements - t o  compensate f o r  t he  t ransverse 
component of the  ex te rna l  stress. 

The t o t a l  stress Ptot received by t h e  device i s  d i s t r i b u t e d  between the  

membrane 1 and t h e  r ing  3. The port ion of t h i s  stress belonging t o  the r ing 
is determined from t h e  condition of compatibil i ty f o r  displacement of t h e  r ing  
and t h e  membrane a t  the  place where they are combined. I f  w e  designate t h e  
force received by t h e  r ing  by P, w e  may determine the stresses and deformations 
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a r i s i n g  i n  t h i s  r ing.  
nate.  

The problem under consideration is  s t a t i c a l l y  indetermi- 

I so l a t ing  one quarter  of the r ing,  due t o  symmetry, w e  obtain the computa- 
t i o n a l  diagram (Figure 26). 
ancy, w e  f i nd  the  expression f o r  t he  unknown mement Mo, which has the following /38 
fom i f  M e  disregard the inf luence of the normal and t ransverse forces.  

As i s  customary, expanding the s ta t ic  indetermin- 

P Ro sin M, = -(1- 2 -), 4JO 

(1.58) 

from 

where the  angle Yo determines t h e  e las t ic  sec t ion  of t he  r ing,  as may be seen 

Figure 26. 

The bending moment i n  an a r b i t r a r y  cross sec t ion  Y of the  r ing  equals 

(1.59) 
2 

A Se t t ing  Yo = - i n  formula (I .59),  w e  a r r i v e  at  the s p e c i f i c  tabular  value 2 
of the  bending moment f o r  a r ing  having a constant cross sec t ion  without a r i g i d  
sect ion.  

MJ, = - PRO .- - cos 9). 1 .  
(I. 60) (t: 2 

The bending moment, which i s  i n  operation i n  the  r ing  cross sec t ion  A 
(see Figure 25) may be obtained by s e t t i n g  Y = Yo i n  formula (1.59) 

(1.61) 

W e  obtain the following correspondingly f o r  t he  r ing cross sec t ion  B 0 = 0 1 

( I .  62) 

of 

w e  

Based on formula (I .60),  w e  may determine the  values of t he  tending moments 
the  r ing  without a r i g i d  sect ion.  

have MA = - 0.3183 PRO ; f o r  Y = 0 and Y = IT t h e  quant i ty  

For the  cross sec t ions  Y = - and Y = 2 IT, 
2 2 

MB = 0.1817 P-Ro. 

I n  con t r a s t  t o  a r ing  which does not have a r i g i d  sec t ion ,  t h e  r a t i o  be- 
tween the  bending moments MA and % of a r ing  with r i g i d  sec t ions  w i l l  depend 

on the  angle Y The s t r eng th  of t h i s  type of e las t ic  element must be calcu- 

l a t e d  according t o  t h e  l a r g e s t  value of one of t hese  moments. 

JI, =  is very frequently employed. 

t he  case JIo = - may be obtained i n  the cross sec t ion  A according t o  formula 3 
(1.61). 

0' 
I n  p rac t i ce ,  

IT The max imum value of t h e  bending moment i n  
IT 

We may determine t h e  dimensions of t h e  r i n g  t ransverse cross  sec t ion  from 
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t he  condition of s t r eng th  

(1.63) /39 
where W is  the  moment of r e s i s t ance  of t he  r ing  cross  sect ion;  (01 -- permissible 
stress. 

The metrological p rope r t i e s  of an e las t ic  element i n  t h e  form of a r ing  
depend s i g n i f i c a n t l y  on i ts  r i g i d i t y .  
deformation of t he  r ing  i n  the  d i r ec t ion  of influence of t h e  ex te rna l  fo rce  P,  
w e  may employ the method of Mob.  The expression f o r  t h e  bending moment i n  
an a r b i t r a r y  cross sec t ion  $ due t o  a u n i t  force has a form 

I n  order t o  determine t h e  maximum 

MI = -Ro(l -COS$). 

The desired displacement may be determined by t h e  following expression 

In t eg ra t ion  of equation (1.64) leads t o  the  following 
deformation: 

( I .  64) 

formula f o r  t h e  r ing  

(1.65) 

I n  a similar way, w e  may f ind  the expression determining t h e  change i n  the  
horizontal  diameter of t he  r ing 

(1.66) 

IT 
Se t t ing  Q0 - -  - 2,  i n  equations (1.65) and (1.66), w e  obtain the  w e l l  known 

r e l a t ionsh ips  f o r  a r ing  without r i g i d  cross  sec t ions ;  

PRX - AB = 0,137-. PR: 
EJ ' EI 

bA = -0,149 - (1.67) 

P lo t t i ng  the  values of t he  bending moments f o r  t he  compressed wires of t he  

i n  which 
r ing  on the  b a s i s  of expressions (1.61) and (1.62) w e  may compile the  diagram 
(Figure 27) from which it  may be seen t h a t  t he re  is a cross sec t ion  ci 
the  bending moment equals zero. I n  order t o  decrease the  creep of t he  s t r a i n  
gauge, i t s  ends are sometimes arranged a t  places where t h e  bending moment equals 
zero. W e  may determine the  coordinate of t h i s  cross sect ion.  
ing from expression (1.59) 

0 

W e  f i nd  the follow- 

(I. 68) 

i.e. , t he  value of t he  coordinate cio depends on the  magnitutude of t h e  angle 
JI, of t h e  r i g i d  sec t ion  of t h e  ring. 

/40 
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I 

The ca l cu la t ion  described above 
makes i t  possible  t o  ca l cu la t e  t he  
stresses a t  a d e f i n i t e  point i n  the 
r ing.  However, the s t r a i n  gauge is  de- 
formed concurrently with a sec t ion  
having a d e f i n i t e  length. Consequently, 
t h e  average stresses along t h e  s t r a i n  
gauge length are measured, and t h e  elec- 
t r i c  s i g n a l  recorded from t h e  l a t t e r  i s  
proport ional  t o  these mean stresses. 
Thus, i n  order t o  perform t h e  calcula- 
t i o n s  i t  is necessary t o  know t h e  aver- 
age stress values over t h e  s t r a i n  gauge 
length. L e t  us determine then i f  S i s  the 

Figure 27. Diagram of Bending Moments 

arc equal t o  the s t r a i n  gauge length and determined by the  angle yo, then the  
average r e l a t i v e  elongation is 

Subst i tut ing the  values 
e =-= a MQ, 

E E - W  

d, = Rad$ and s = R, * a,, 
w e  obtain 

(1.69) 

(1.70) 

Subst i tut ing the  value of My i n  t he  expression obtained according t o  for- 

mula (1.59) and performing in t eg ra t ion ,  w e  obtain 

0 .  .= - P R ~  (sin-r,----sin+, 1 . 
av 2Wa0 Y. (1.71) 

In those cases when the strain gauge ends are located a t  positions where 
ths bending "ents ,  and consequently the stresses, equal aero, it  is  suffi- 
cient to set yo = a. i n  formula (1.'71), i n  order to detemine uav . 

The stress P received by the  r ing  comprises a port ion of t he  t o t a l  stress 
influencing the  device. Therefore, i n  order t o  determine t h e  extent  t o  P t o t  

which the  s e n s i t i v i t y  of t h e  elastic element is reduced, i t  is necessary t o  
determine t h e  stress PM. It i s  necessary t o  know t h e  stress PM i n  order  t o  

design t h e  membrane f o r  s t rength.  

I n  order t o  determine PM and P, w e  have t h e  equation 
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( I .  72) 

W e  obtain t h e  following from t h e  condition of compatibil i ty f o r  displacement 
of t he  membrane and t h e  r ing  A = v  A max' 
r i n g  determined by expression (1.65), andvmax i s  the maximum de f l ec t ion  of t h e  /41 
membrane according t o  expression (1.8): 

where AA is  the  displacement of t he  

where R and r are t h e  corresponding dimensions of t he  membrane; D - i t s  
c y l i n d r i c a l  r i g i d i t y .  

Solving equations (1.72) and ( I .  73) concurrently, we  obtain 

where k is a dimensionless coe f f i c i en t  having the  following form 0 
1 
4 

16xD Rt  (1 -5) ($ q0 +- sin2y -- 
O --?a- -. k, = 

EJR2[ 1 + ( $)4 - 2 (:)' - 4 ($-r . (In 3'1 ' 

(1.73) 

(1.74) 

( I .  75) 

(I. 76) 

The maximum bending moment of the p l a t e  may be determined from expression 
(1.9), and t h e  corresponding stress may be determined according t o  the  follow- 
ing formula 

(I. 77) 

L e t  us provide a numerical example f o r  t h e  following i n i t i a l  da t a  (see 
= 50kgf;  Ro = 25 mm; width of t he  r ing b = 10 mm; thickness of 

P t o t  IT 
Figure 25): 

t he  r i n g  h = 1.75 mm; angle of t h e  r ing  e las t ic  sec t ion  $ 

t he  membrane R = 36 mm, r = 1 2  mm, h = 0.5 mm. Permissible stress [a] = 40 

= - ; dimensions of 

kg f /m2;  modulus of e l a s t i c i t y  E = 21,000 kgf/mm2; Poisson coe f f i c i en t  v = 0.3. 

8 3  

m 

0 W e  may employ (1.76) t o  determine the coe f f i c i en t  k 

h, = : 0,109. 

According t o  equations (1.74) and (1.75) w e  obtain 

p = 45 kgf and Pm = 5 kgf 
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The s e n s i t i v i t y  loss of the  fo rce  measuring device is  thus as follows, due 
t o  the presence of t h e  membrane 

9 u  -=IO%. 
Prot 

I n  addi t ion,  based on formulas (1.61) and (1.62) w e  may f ind  the bending /42 
moments i n  the  r i n g  cross sect ions 

MA = - 183kgf IDIU 
M,3=97 kgf mm 

The ca l cu la t ion  shows t h a t  t he  bending moment is  l a r g e s t  i n  t he  cross 
sec t ion  A of t h e  r i n g  r i g i d  sect ion.  
moments, w e  may determine the stress 

Based on the  magnitude of the l a r g e s t  

MA 
. w -  M,,,= - 

The moment of r e s i s t ance  of t he  r i n g  cross sec t ion  equals 

YE--  &* - 5,1 ,VAS, 
6. 

from which w e  have 

amax = ' - 183 - - 36 k€f/&nt2 < [a], 
5,1 

i .e. ,  t he  condition of s t r eng th  f o r  t h e  r i n g  is  s a t i s f i e d .  

L e t  us determine the changes i n  the  v e r t i c a l  and ho r i zon ta l  r ing diameters. 
Taking i n t o  account t he  s igns 
(1.65) and (1.66),we obtain 

of the  displacements, according t o  expressions 

AA = - 0,159 AN; AB = 0,261 AM. 

Assuming t h a t  the s t r a i n  gauge i s  d i s t r i b u t e d  over an arc (-a + a o ) ,  w e  
may ca l cu la t e  t h e  angular coordinate ao, a t  which t h e  bending equals zero, and 

the  average stress CI 

and according t o  the dependence (1.71) w e  obtain oaV = 12.6 k g f / m  

0' 

Based on formula (I .68),  w e  f i nd  a = 34" 19', 
av' 0 2 

I n  conclusion, w e  m u s t  check the  stress i n  the  membrane. From expression 
(1.9) w e  f i nd  the  value f o r  the maximum bending moment which w i l l  be as follows 
i n  t h e  cross  sec t ion  of the r i g i d  center  

M,,, = - 0,585 kHaX2; 
and the corresponding stress equals 

L e t  us i nves t iga t e  an elastic element i n  which, i n  addi t ion t o  r i g i d  
sec t ions  on t h e  vertical axis I - I, t h e r e  are a l s o  r i g i d  sec t ions  on the 
ho r i zon ta l  axis I1 - I1 (Figure 28). 
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Expanding t h e  s ta t ic  indeterminancy i n  the  customary way, w e  obtain the  
expression f o r  t h e  bending moment i n  the r i n g  cross  sec t ion  JI 

(I. 78) 

I n  the  case when the  r i g i d  sec t ions  are i d e n t i c a l  over t he  length JI = /43 2 
IT - - -  - JI,, expression (1.78) assumes the following form 
2 

(1.79) 

We may f ind  the  bending moment i n  the cross sec t ion  A i n  the case JI = JI,, 

1' and i n  the  cross sec t ion  B i n  the case JI = JI 

I n  order t o  obtain the r i g i d i t y ,  i t  is necessary t o  have t h e  expressions 
determining the  deformation of the r ing e l a s t i c  sect ion.  n e  i d e n t i c a l  na tu re  
of t he  points  lying on the  r ing vertical  ax i s ,  f o r  t h e  elasttc element diagram 
under consideration, may be expressed as follows: 

1 
4 

+ - (sin 2$%- sin.2+,) - 

1 - (sin q2 -1 sin +1)2 

$2 - 91 
IT I n  t h e  case when J12 = - - JIl, we  obtain 2 

(1.80) 

(1.81) 

Correspondingly, w e  obtain the  following f o r  displacement along the hori- 
zontal  a x i s  I1 - I1 

PRO sin $a - sin I AB =- (cos (Jl - cos $J -- (sin2 q2 -.sin2 $J]. EJ t 4%-41 2 
(1.82) 

For an e l a s t i c  element with r i g i d  sec t ions  of equal length,  expression 
(1.82) assumes t h e  following form 

(1.83) 

The e las t ic  sec t ion  of the r ing of e las t ic  elements widely employed i n  
force measuring technology (see Figure 25) has a constant cross sect ion.  
Calculations have shown t h a t  t he  g r e a t e s t  stress customarily arises a t  t h e  points  
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Figure 28. E l a s t i c  Element of t he  
Circular  Type with Rigid Sections on 
the  Ver t i ca l  and Horizontal Axes. 

A c lose t o  the t r a n s i t i o n  t o  t h e  r i g i d  
sect ions.  Thus, t he  average stress 
which may be r ea l i zed  by s t r a i n  gauges 
is considerably higher,  as a ru l e .  

/44 

Consequently, i n  t hese  types of 
elastic element constructions,  t he  
magnitude of t he  measurable stress is 
l imited by the  max imum stresses which 
are i n  operation a t  dangerous points  of 
the r ing cross sect ion.  

The use of r ings  having a va r i ab le  
cross sec t ion  as elastic elements makes 
i t  possible  t o  produce the  l a r g e s t  
stresses a t  those places where the  s t r a i n  
gauges are glued on. 
an elastic element, whose middle l i n e  
has the  form of an arc of a c i r c l e ,  
with the  radius  R (Figure 29). W e  0 

L e t  us i nves t iga t e  

s h a l l  assume t h a t  the supporting sec t ions  are absolutely r i g i d .  Due t o  the  
symmetry, i t  is s u f f i c i e n t  t o  inves t iga t e  one fourth of t he  e las t ic  element 
(Figure 30). 
i n e r t i a  along thebeam axis:  

L e t  us employ the  following l a w  f o r  the change i n  the  moment of 

JO J+ = - 
cos kr) ’ (1.84) 

where J 

k is  determined from the condition t h a t  t he  stresses i n  the  cross sec t ions  I - I 
and I1 - I I h a v e  a d e f i n i t e  r a t i o  t o  each other .  

is the moment of i n e r t i a  of the cross  sec t ion  I - I, and the  coe f f i c i en t  0 

Assuming t h a t  the r ing is  abeam with a s m a l l  curvature and expanding the  
s t a t i c  indeterminancy i n  the customary manner, w e  obtain the following expres- 
s i o n  for  t he  unknown bending moment i n  the cross  sec t ion  I - I: 

(c tg k$, sin +,--lccos 9,) . 
2 1 (1.85) 

The expression f o r  the bending moment i n  an a r b i t r a r y  cross sec t ion  has 
the  following form 

(1.86) 

Assuming t h a t  t he  height  of an a r b i t r a r y  cross sec t ion  + of the  r i n g  may 

(ctg k+, sin 3, - k cos 31,) - cos (1) . 1 M + = A  - ‘: [I !kZ 

be expressed as 
h0 h+ = v - i  ’ 

(1.87) 

w e  obtain the following formula f o r  t he  stress i n  an a r b i t r a r y  cross sect ion:  
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n\ . 

Figure 29. Circular  Elastic Element 
with Variable Cross Section. 

Figure 30. Calculational Diagram. 

(1.88) 

The coe f f i c i en t  k may be determined most simply by defining it  by means of 
of the  heights  of t h e  cross sec t ions  I1 - I1 and I - I t h e  r a t i o  m 

Employing formulas (1.87) and (1.89), w e  f ind  
1 1 

9 0  ms * 
k = - arc cos- (1.90) 

When elastic elements are constructed,  i t  is a l s o  necessary t o  know the  

T h i s  displacement is  determined by the Mohr in t eg ra l .  Avoiding t h e  
displacement vA of t he  clamp i n  the  d i r ec t ion  of t h e  l i n e  of inf luence of the 

force P. 
cumbersome calculat ions,  w e  shall present the f i n a l  r e s u l t  

Sometimes the  f i r s t  s i g n i f i c a n t  d i g i t s  vanish as a r e s u l t  of calculat ing 
vA, which decreases the computational accuracy. 

a s l i d e  r u l e  is s u f f i c i e n t  f o r  calculat ing the  stresses, the quant i ty  vA must 

be calculated with a l a r g e r  number of places.  

Therefore, i f  t he  accuracy of 
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Just as i n  the  preceding cases, i n  order t o  decrease t h e  creep the  s t r a i n  
gauges are glued on s o  t h a t  their .  ends en te r  t he  zones of zero stresses. 
addi t ion,  i t  is i n t e r e s t i n g  t o  know t h e  average stress over the length of t he  
s t r a i n  gauge. Se t t i ng  the equation f o r  t he  bending moment (1.86) equal t o  zero, 
w e  obtain the  coordinate a0 of the  cross  sec t ion ,  i n  which the  stresses equal 

zero : 

I n  

/46 

k a0 = arc cos .- (ctgkq, sin q0 - k cos q0). 
1 - ka (1.92) 

The average value of the relative elongation of the s t r a i n  gauge i s  
determined by equation (1.70). Final ly ,  t h e  expression has t h e  following form 

(ctgkqo - sin qo - k COS $oj - 
(1.93) 

0 

x 7 cos2kg dq. 

This formula may be employed f o r  the ca l cu la t ion  according t o  any approxi- 
m a t e  method. The form obtained f o r  t h e  curves of the r ing elastic sec t ion ,  
based on technological considerations,  may be appmximated by the arcs of a 
c i r c l e ,  f o r  example. Thus, even a s i g n i f i c a n t  deviat ion of t h e h a m  middle 
l i n e  from a c i r c l e  i s  of no s i g n i f i c a n t  importance. 

L e t  us study a numerical example. L e t  us set P = 5Ckgf, Ro = 4.2 cm; t he  

width of the r ing  b = 2 cm; t he  permissible stress [ o ]  = 3000kgqcm2, $J, = TOo, 
m = 3. 

According t o  formulas (1.86) and (I .90),  w e  obtain 

k 1,25; M+=o = - 0,13 -__ PRO ; 
2 

A diagram of the bending moments isshown i n  Figure 31. On t he  bas i s  of 
formula (1.881, w e  obtain 

Thus, the max imum stress i n  the cross sec t ion  $ = 0 is more than t w i c e  as 
Figure 32 presents  a diagram l a rge  as the  stress i n  the cross  sec t ion  $ = $ 

of t h e  maximum stresses. 
deformation: 

0' 
Based on formula (1.91), w e  may determine the  r ing  

Pi?: 
&I = 0,0178 - 

EJ,  . 
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Equating t h e  max imum stress i n  the  cross  sec t ion  $ = 0 with the permissible 
stress [a] = 3000kgf/cm2, we f i n a l l y  obtain 

h,, = 1,17 xuw; uA = 1,23 xh. 

W e  have s tud ied  a c i r c u l a r  element having s m a l l  curvature,  f o r  which /47 
h - < 
Ro 5 
low loads. 
then the  c i r c u l a r  element changes i n t o  a beam with large.  curvature,  and the 
formulas presented above are no longer applicable.  It must be noted that. a 
r ing  having g rea t  curvature has seve ra l  advantages as compared with a r i n g  of 
s m a l l  curvature: i t  is  more r i g i d ,  i t  has less non l inea r i ty ,  etc. This case 
presents  an i l l u s t r a t i o n  of t he  general  assumption: the design of e las t ic  
elements f o r  large loads encounters much less  d i f f i c u l t y  than the design of 
e l a s t i c  elements f o r  small loads. 

However, such an elastic element is  only employed f o r  comparatively 

I f  t he  l imi t ing  load is  high -- f o r  example, more than 5OOkgf -- 

Figure 31. Diagram of Bending 
Moments . Figure 32. Diagram of Maximum Stresses. 

Most frequently,  a c i r c u l a r  e l a s t i c  element with l a rge  curvature is  made 

Usually, i n  
with a va r i ab le  cross  sec t ion  i n  order  t o  equalize the  stress somewhat. 
nature  of the change i n  the r ing cross sec t ion  may vary g rea t ly .  
order t o  simplify the  production, the contour of t he  c i r c u l a r  element is l imited 
by a rc s  of a circle. Thus, as a r u l e ,  t he  t ransverse cross  sec t ion  is  rectangular.  
Thus, the height  of t he  cross sec t ion  i s  va r i ab le ,  and the  width of the r ing  
is constant. 

The 

A c i r c u l a r  e l a s t i c  element haviqg l a rge  curvature i s  shown i n  Figure 33. 
Due t o  the symmetry with respect  t o  the  axes, it i s  s u f f i c i e n t  t o  examine only 
one fourth of the ring. The angle $ is read from the a x i s  x ,  and the  normal 
force N = then act a t  the cross  sec t ion  $ = 0. and the  unknown moment M 0 2  0 
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L e t  us load t h e  system a l s o  by a f i c t i t o u s  force Qo, which will be used /48 
la ter  on t o  determine the deformation of the horizontal  diameter. 
f o r  t he  normal stress i n  an a r b i t r a r y  cross sec t ion  has the  following form (Ref. 

The expression 
! 

(1.94) 
N MJ, M4r+ y a y + = 3 + - + - - ,  
FJ, ‘+F+ J‘ Y +  r+ 

19 1 

where 

(1.95) Qo 
2 

N+ = N o  sin a+ - - cos a,; 

where a 

distance from t h e  n e u t r a l  l i n e  up t o  t h e  point  a t  which t h e  stress is  determined; 

is the  angle between the normal t o  the  n e u t r a l  l i n e  and the  axis; y - 
$ 

f o r  a rectangular cross sec t ion  

(I. 96) 

F is the  area of the r ing cross sec t ion  under consideration; 
$ 

r 

deflect ion;  

- r i n g  radius of curvature i n  the  ho r i zon ta l  cross  sec t ion  before 0 

r - r ing  radius  of curvature i n  an a r b i t r a r y  cross  sec t ion  before deflec- 
J, 

t i o n ;  

h - height of t he  r ing  a r b i t r a r y  cross sect ion.  

L e t  us formulate the expression f o r  t he  i n t e r s e c t i o n  force Q which w e  
J, 

J,’ 
s h a l l  need later on: 

(1.97) 
Q Q+ = N o  cos a+ + 2 sin a+. 
2 

The unknown moment M may be determined from the  condition t h a t  the angle 0 
of r o t a t i o n  of the ho r i zon ta l  cross  sec t ion  equals zero. According t o  the  
theorem of Castigliano, t h i s  condition has the  following form 

(I. 98) 

- I49 

where II is  the t o t a l  p o t e n t i a l  energy of t he  curved beam, which equals t h e  
following i n  our case (Ref. 15) 
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and in t eg ra t ion  is  
(1.99) E and G are 
respect ively : so - 

(1.99) 

performed over one fourth of t he  beam a x i a l  l i n e .  
t h e  moduli of e l a s t i c i t y  of t he  first and second kind, 
length of a fourth of the curve passing through the center  

I n  formula 

of g rav i ty  of the cross sect ions;  a - coe f f i c i en t  depending on the form of the  
beam transverse cross sec t ion  

F 
J ,  ($)2dF+, 

F+ 
where S is the s ta t ic  moment of t h e  surface.  

ty 

Figure 33. E l a s t i c  Element w i t h  Large Curvature 

For the  rectangular cross sec t ion  a = 1.2 ,  and the dis tance of the n e u t r a l  
axis from the  center  of g rav i ty  of the cross sec t ion  is 

4 r+'1 . e = r+ - - = 
J ,  + brEh+ ' 

11 

where rl is the radius  of curvature of t he  inner  r ing  contour ( r  = r - 
r - radius of curvature of the outer  r ing contour ( r 2  = r + !?!L ). 

Thus , condition (I. 98) y ie lds  

); 1 $ 2  

2 9 2  

( I .  100) 

Employing expressions (1.951, (1.96) and (1.97) and solving equation /50 
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(1.100) with respect t o  Mo, i n  t h e  case Q = 0 w e  obtain 0 

(1.101) 

(S.1 

The i n t e g r a l s  contained i n  t h i s  formula may be determined e i t h e r  by- numerical 
i n t eg ra t ion  -- f o r  example, according t o  the Simpson l a w  -- o r  d i r e c t l y ,  a f t e r  
approximation of the integrands by s u i t a b l e  functions which make it  possible  
t o  obtain the  i n t e g r a l s  which may be reduced t o  t abu la r  i n t e g r a l s .  
when the  numerical example is invest igated,  the manner i n  which these functions 
are se l ec t ed  w i l l  be  shown. 

I n  addi t ion,  

Making i d e n t i c a l  transformations i n  the expression 

= f, - - .-___ h, e = r , -  4 
h, h, 

' J ,  + 2 '+Zr, 

and expanding it  i n  series, w e  f i n a l l y  obtain 

(1.102) 

-- 2;;s ( 2 ? J 6 -  *4 
1 

- 2  
% < - i t  is  It may be r ead i ly  seen t h a t  even f o r  t he  r e l a t ionsh ips  r 

s u f f i c i e n t  t o  confine ourselves t o  the two terms of t h i s  expansion. 
@ 

I n  order t o  determine t h e  displacements of the v e r t i c a l  AA and the  ho r i zon ta l  

A of the  cross sec t ions ,  w e  may again employ the Castigliano theorem B 

Employing expression (1.99) f o r  t h e  p o t e n t i a l  energy, w e  obtain 
P (ro - r, ccs Q)? - lMo (r, - r, - cos+) P - sin2 u, A A = 4  . -~ + -- -- s WF+er ,  4 E  - F, 

(SO) 

ds; . 1 M, sin a+ - P sin a+ ( f ,  - r+ cos +) - 
2EF+ * f + .  

45 



[- 2M0 $- P (ro - r+ cos +)] sin + 
A B = 4  s( 4EF+e 4EF+ 

P sin a+ cos a+ + - 
(SO) 

2M0 'cos a+-P [r+ sin a+ sin + - cos a+ (ro - r+ cos +)] - +  -k 4EF+ * r+. 

a P -  sina+cosa+ 
. }ds. 

G F +  
f 

According t o  these 

A w e  may c a l c u l a t e  A 
rll, 

formulas, i f  w e  know t h e  l a w  f o r  the change i n  h and 

and AB e i t h e r  by numerical methods of i n t eg ra t ion ,  o r  
$ 

-- f o r  example, a n a l y t i c a l l y  -- by approximating the  values contained i n  the 
integrand by the functions se l ec t ed  by the  appropriate  method. 

L e t  us examine a numerical example (Ref. 28). For the e l a s t i c  element 
shown i n  Figure 34, i t  is necessary t o  determine t h e  stresses i n  the  ho r i zon ta l  
and vertical cross sect ions.  The elastic element i s  l imited by the arcs of 
the c i r c l e s  having the r a d i i  R1 and R2 (which are d i s t r i b u t e d  i n  an eccen t r i c  

manner) and the  rectangular s ec t ion  kc. 

= 1.938 cm; R2 = 3.4 cm; d is tance between the  centers  of t h e  circles a = 1.36 an; 

width of t he  t ransverse cross  sec t ion  b = 1.0 cm; load P = 500 kgf. 

The i n i t i a l  data  are as follows: R1 = 

L e t  us approximate the  l i n e  passing through the  center  of g rav i ty  of t he  
cross sec t ions  by a circle with a center  a t  the  point  D ( x  = - a , y = 0) and 

'with the radius  Rav - - R1 + R2 . It may be s t a t e d  t h a t  t h i s  approximation w i l l  

be more p rec i se ,  the smaller is  the dis tance a. 
be absolutely r i g i d .  Thus, a$ = JL - $. 

2 
very w e l l  by the following r e l a t ionsh ip  

r 
The sec t ion  kc is  assumed t o  

2 

W e  may note t h a t  the height  is described 

a h+ 4 Ra- - l - - c~sJI .  
2 

The area of t h e  t ransverse cross  sec t ion  may be determined by t h e  expres- /52 
s i o n  

W e  obtain the following from formulas (1.101) and (1.102) 
x x - - 

2 

(1.103) 0 

15 

M,= - 
z z 

46 



. - . .. I I I I I  

Figure 34. 
Element with Large Curvature. 

Design of an Elastic 

Ekpression (1.103) may b e  simpli- 
f i e d  i n  the  majority of cases en- 
countered i n  p rac t i ce .  For t h i s  
determination, l e t  us employ the i n t e g r a l s  
contained i n  it: 

x 

4 
15 dr), \< - 15hmin (9 - I); (1.105) 

0 

x - 

4R:" . (I. 107) >- .- 
3 2 '  

'ma, 
0 

(I. 108) 

0 

It may be r ead i ly  seen t h a t  even i n  the  case = 3 t h e  i n t e g r a l s  (I .l05) 
hmax 

and (1.106) are small as compared with the  i n t e g r a l  (1.04) , and the i n t e g r a l  
(1.108) is  small as compared with the  i n t e g r a l  (1.107). 
i n t e g r a l  (1.105) thus comprises % 1%, and the  i n t e g r a l  (1.106) comprises % 2%' 
d i n t e g r a l  (1.104), and i n t e g r a l  (1.108) comprises % 1% of i n t e g r a l  (1.107). 

- I 5 3  
I n  a c t u a l i t y ,  the 

The s implif ied expression f o r  Mo acquires the  following form 

In teg ra t ing  

Mo=-  
x - 
2 

J$ 0 

t h i s  eauation. w e  obtain 
2 p = D -  

k (4 - k') - 2 + ka+ (2 - 3k + k') ~ arc tg vi=P I-k 
i 

P R  M o =  __av 
2 2 1/1--* R (4 - kz) + (2 + k2) - arc tg ~ 

1 / 1  -k* I - k  
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where 

For our numerical example, M = 181kgf cm.The value of Mo calculated i n  0 
(Ref. 28) according t o  the  Simpson l a w  equals 178kgfcm, i n  accordance with the 
formula (1.100). 
f o r  these calculat ions.  

The divergence comprises Q 1.5%, which is  f u l l y  acceptable 

Based on formula (I.94), w e  may c a l c u l a t e  the stresses a t  the outer and 
inner edges of t he  horizontal  and v e r t i c a l  cross  sect ions.  

2 
outer edge ............................. 1270 k g f / a 2  
inner edge ............................. 2250 W / c m  

inner edge .............................. 1670 kgf/cm 

Horizontal cross  section: 

Ver t i ca l  cross  sect ion:  2 

L e t  us compare these r e s u l t s  with the extrema1 da ta  given i n  (Ref. 28). 

Horizontal cross  sect ion:  2 
outer edge.. ............................ 1165 kgf/cm2 

Vertical cross  sect ion:  2 

inner edge .............................. 2175 kgf/cm 

inner  edge .............................. 1775 kgf/cm 

The divergences comprise +8%, +3.5% and -6% respect ively,  which is  
completely s a t i s f a c t o r y .  

I n  conclusion, w e  would l i k e  t o  note t h a t  t he  calculat ions may be s ign i f -  
i c a n t l y  s implif ied f o r  a th i ck  c i r c u l a r  r i n g  having a constant thickness.  
t h i s  case,  t he  moment M 

I n  
may be determined by the  following expression 0 

The stresses may be calculated according t o  formula (1.94). The expressions& 
f o r  t he  displacements are a l s o  s implif ied:  

For the  v e r t i c a l  cross  sec t ion  

For the horizontal  cross  sec t ion  

The r a d i i  R and R of the c i r c l e s  defining the  e l a s t i c  element must be 1 2 
selected so t h a t ,  on the one hand, t he  calculated stress provides the  necessary 
e l e c t r i c  s igna l ,  and, on the other hand, so  t h a t  the maximum stress a t  the  
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cross  sec t ion  B does not exceed the  maximum stress a t  the  cross  sec t ion  A,  where 
the  s t r a i n  gauges are located. 
ship is f u l l y  sa t i s f ac to ry .  I n  p rac t i ce ,  i f  it is not possible  t o  f u l f i l l  t h i s  
condition from t h e  very beginning, i t  is  necessary t o  change the  dimensions and 
t o  make a second calculat ion.  

I n  t h e  example under consideration, t h i s  re la t ion-  

3. E l a s t i c  Element i n  the  Form of a Circular  P l a t e  
With a Concentric Rib 

Beginning with t h i s  sect ion,  w e  s h a l l  i nves t iga t e  elastic elements upon 
which the  s t r a i n  gauges are wound i n  the  form of a s p i r a l ,  and are not  glued on. 
This construction is done so as t o  avoid s h i f t s  a r i s i n g  between the s t r a i n  
gauge and the  body of t he  e l a s t i c  element during the deformation process. The 
p r inc ip l e  has produced a l a rge  number of e l a s t i c  elements which represent ,  i n  
the majority of cases, bodies of r o t a t i o n  undergoing W i s F e t r L c a l  deformation. 

IP I p  
2 

I 

f MR 

Figure 35.  E l a s t i c  Element Having Figure 3 6 .  Computational Diagram: 
the Form of a Circular P l a t e  With 1 - Inner Section of t he  P l a t e ;  
a Concentric Rib. 2 - Outer Section of t he  P l a t e ;  

3 - Ring. 

The e l a s t i c  element under consideration (Figure 35) represents  a c i r c u l a r  
steel  p l a t e  fastened onto the outer c i r c l e  and having a r i g i d  center  i n  the /55 
middle which serves t o  load the p l a t e  with the  concentrated fo rce  P. 

A r i n g  having the  radius  rk, t h e  height  H, and t h e  width b is placed 
symmetrically with respect  t o  the p l a t e  axis .  
the r ing.  
t he  r i n g  are deformed. I f  t he  fo rce  P is  applied as is shown i n  Figure 35, 
t he  w i r e ,  which is  mounted on the lower sec t ion  of t he  r i n g ,  is  elongated; t he  
w i r e  mounted (usually w i t h i n i t i a l  stress) on the  upper sec t ion  of the r ing  
is compressed. 

A w i r e  transducer is  wound onto 
Under t h e  influence of t h e  ex te rna l  fo rce ,  t he  c i r c u l a r  p l a t e  and 

L e t  us introduce. s eve ra l  simplifying, obvious hypotheses. I n  the  calcu- 
l a t i o n  being considered, allowance cannot be made f o r  t he  influence of t h e  
w i r e  transducer,  due t o  its smallness. I n  addi t ion,  t h e  r a d i a l  stress i n  t h e  

w i r e ,  which is  wound onto the  generatr ix  of t he  r ing with a c e r t a i n  stress', 
does not introduce any q u a l i t a t i v e  changes i n t o  the  calculat ions.  
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Based on the  l a w  of t he  independence of t he  fo rce  d i r e c t i o n  of influence,  t h i s  
r a d i a l  stress may be regarded as an add i t iona l  stress which produces t h e  bending 
moment ac t ing  a t  the  p l a t e  c ros s  sec t ion  and s h i f t i n g  i t s  zero posi t ion.  

The p l a t e  de f l ec t ions  are s m a l l  as compared with its thickness,  and the 
thickness is  s m a l l  compared with the  radius.  
performed on the b a s i s  of generally known hypotheses which are similar t o  
those which are applied i n  the  de f l ec t ion  of beams. 

Therefore, t he  ca l cu la t ion  is 

W e  s h a l l  assume t h a t  t h e  r i b  is a beam with a s m a l l  curvature,  s ince  t h e  
r a t i o  between the r i n g  cross  sec t ion  width and the  radius  of t h e  a x i a l  l i n e  
i s  s m a l l b  <<1. 

may be seen i n  Figure 35. 

The geometric dimensions of t h e  p l a t e  and the  notat ion employed 
R 

Changing t o  the  computational diagram (Figure 361, l e t  us divide the 
p l a t e  i n t o  its component elements, and w e  may replace the  ac t ion  of t he  discarded 
sec t ions  by t h e  corresponding stresses. L e t  us  i nves t iga t e  the  de f l ec t ion  of 
t h e  p l a t e .  /56 

The d i f f e r e n t i a l  equation f o r  t he  symmetrical de f l ec t ion  of a c i r c u l a r  
p l a t e  which is loaded t ransversely has the  following form. 

Where p - 
e -  
Q -  
D -  

E -  
v -  

-[-- d l d  (p. e)] = -$, 
dP P dP 

independ en t va r i ab le  ; 
corresponding angle of r o t a t i o n  f o r  t h e  cross  sect ion;  
t ransverse fo rce  ac t ing  a t  t h e  cross  sec t ion  p ;  
c y l i n d r i c a l  r i g i d i t y  

D =  Ehs . 
12(1-+) ' 

modulus of e l a s t i c i t y ;  
Poisson coe f f i c i en t .  

(1.109) 

For t h e  assumed computational diagram, i t  i s  apparent t h a t  t h e  magnitude 
of t h e  t ransverse fo rce  ac t ing  a t  t h e  cross  sec t ion  equals 

Q=-- P 
2E . p '  

Therefore, t he  d i f f e r e n t i a l  equation (1.109) assumes the  following form 

Performing in t eg ra t ion ,  w e  obtain 

(1.110) 

or ,  i n  other  words, 
d P 

dP ' 2nD P InP f c, - P - (p * e) = - . 
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.. . .. . , ,, 

Performing integration, we obtain 

I 1 1 1  I I I I I I I I  I 

We thus find the expression for the angle of rotation of the plate 
cross section a;t any arbitrary point 

c2 P 
p 8nD (I. 111) 

0 = C,p + ---+ -p (2 lnp- 1). 

d0 
dP 

The expression of the derivative -has the following form 

(I. 112) 

The deflection of the plate may be found from the following equation 
V Ca - J’ edp. (1.113) /57 

Substituting the value 0 from formula (1.111) in expression (1.113) and 
performing integration, we obtain 

(1.114) 

In the computational diagram (see Figure 36) for the inner plate section, 
the independent variable p may be changed within the limits r < p < rk. 
additional index 1 is introduced for the integration constants in this region, 
and the index 2 is introduced for the outer plate section, where the argument 
changes within the limits rk < p < R. In addition, the ratio p i s  introduced 

in expressions-(I.lll), (1.112) and (1.114) under the sign of the natural 
logarithm, instead of the argument p .  
of the integration constants. Thus, we have the following system of equations: 

u = C 3 - - .  . CI p2-C21np- -(lnp-1). PP2 
2 8xD 

The 

R 

This is only indicated by the magnitude 

For the inner section of the plate (r < p < rk): 
(I. 115) 

(I. 116) 

For the outer section of the plate (rk < p < R): 
(I. 118) 

(1.119) 
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(I. 120) 

It is necessary to determine 6 unknowns from the obtained system of equa- 
tions based on the given boundary conditions. In order to determine the constants 
Cll, C21, C12 and C22, we have the following boundary conditions: 

1) p = r ,  e, = 0; 
2) p = R, e, = 0; 

where 8 is the angle of rotation of the cross section of the ring located 
on the radius rk. 

Satisfying the first condition, we obtain 
~ , , . r + 2 + - .  P 

f 8nD 

The second boundry condition 

C,,R 

The third condition leads to 

yields 

R = 0. +&-- P 
R 8nD 

the following expression 

Introducing the notation 

r, = kR, 
We obtain 

C2l c2z - 0. c,,kp - C,&R + - - - - kR kR 

(1.121) 

(I. 122) 

(I. 123) 

In order to formulate the fourth equation, it is necessary to employ 
condition of compatibility for deformation of the plate and the ring. 

Figure 37. 
Loading. 

Diagram of the Ring 

Figure 38. Determination of the 

124) 

the 

/58 

Bending Moment. 
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The r i n g  separated from the  p l a t e  ca l cu la t iona l  diagram (Figure 37) is  

m = M,, - Mp,. (1.125) 

L e t  us  represent  the e f f e c t i v e  moments i n  the  form of vectors  (Figure 381, 
and w e  may f ind  t h e  value of the bending moment from the  condition of t h e  r i n g  
equilibrium. L e t  us write of the sum of t h e  project ions of t h e  moment vectors  
on the  x - x a x i s  

def lected uniformJ.y by the  d i s t r i b u t e d  moment 

x 

2%enz m sin ?) rx - dg, 
0 

from which w e  obtain 

%enz  m r ~ .  ( I .  126) 

f o r  the bending moment, which a c t s  upon the r i n g ,  w i l l  have the following form 

k R  (MP. - 4,). (1.127) 

The angle of r o t a t i o n  f o r  t he  r ing  cross  sec t ion  8 may be determined 
The normal stress a t  the  end point  of 

With allowance f o r  the r e l a t ionsh ips  (1.123) and (1.125), the expression 

from the  following considerations.  
any t ransverse cross  sec t ion  of the r i n g  (Figure 37) equals 

- 159 

L e t  us  f i n d  the  r e l a t i v e  elongation a t  the  same point  

Due t o  deformation, t he  absolute  change i n  the radius  rk comprises 

On the b a s i s  of expression (1.130), w e  may f ind  

O r  

It follows from formula (1.131) t h a t  

(1.128) 

( I .  129) 

(1.130) 

the angle of r o t a t i o n  f o r  

(I. 131) 

(1.132) 

I n  order t o  s a t i s f y  the  fourthboundary condition, i t  is necessary t o  have 
The bending r a d i a l  moment ac t ing  the  expression f o r  t h e  d i f f e rence  M 

i n  the  p l a t e  cross  sec t ion  may be determined by t h e  w e l l  known dependence 

- M 
P 2  P l '  
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(I. 133) 

Subs t i tu t ing  the  expressions (1.115), (1..116), (1.118) and (1.119), which 
w e r e  derived above, i n  formula (1.1331, we  ob ta in  

On the  bas i s  of equation (1.132), we  ob ta in  

clz(14-v)-cll(l + v ) - ~ ( l - - , V ) + c I 1 ( 1 - . , ) ] = E t l * .  (kR)' 0. 
(I. 135) P' .PI 

According t o  the  boundary c o d i t i o n a , w e  must s u b s t i t u t e  t he  values p = /60 
- i n  expression ( I .  135) l ( k )  = '2(k) = r k = k R a n d 0 = 0  

e = cl1m+ + - k ~  P (2 ink- I). ( I .  136) 
kR 8xD 

W e  f i n a l l y  ob ta in  

1 D p l , ( l + v ) - c ~ ( l  +v)--,(l-v)+-(1-v) C¶¶ c21 = 
(kR) @R)* 

- + - k R ( 2 I n k -  c21 p 
8xD 

Reducing similar terms, w e  a r r i v e  a t  the  following 

P - E - J ,  ( I .  137) 

Thus, we  have obtained a system of four equations (1.1211, (1.122), (1.124) 
and (1.137) with four  unknowns Cll, CZ1, C12 and C22. 

we  f i nd  the  following values  f o r  t he  in t eg ra t ion  constants  : 

Solving these equations,  

I 

2DkR [ 1 - ($)* (1 + 2 In +)] 4- EJ,  (1 - 
2DkR[I -(+)'I+ EJx (1 - 

cll= - 

(1.138) r 
3 

r c,, = - 
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(1.138) 

By employing the four coefficients obtained, we may determine the angles 
of rotation of the cross sections and their derivatives, and consequently the 
corresponding bending moments (1.133). 

/61 

In order to calculate the deflections v 

31 32' 

and v4, we must know the inte- ?.-  
gration constants C and C 
of the specific values of the coefficients (1.138). 
boundary conditioxas : 

which may be advantageougly expressed by means 
We have the following 

1) p = fz = RR, U, = u,; 
2) p = R ,  u, = 0, 

Satisfying the first equation, we obtain 

(Ink - 1) = c,, - + ( k ~ ) , -  c,. Ink - P - (kR)' 

= C3a-T (kR), - C,, Ink - - (kR)' (In R - I). 
8xD 

8nD 

from which we have 

The second boundary conditfon yields 

32: from which we find the direct valueof c 

Substituting equation (1.140) in expression (1.139), we obtain 

(I. 139) 

(I. 140) 

(I. 141) 
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The values found f o r  t he  constants C31 and C may be subs t i t u t ed  i n  the  32 
i n i t i a l  formulas (I. 117) and ( I .  120) . We obtain t h e  expressions f o r  ca l cu la t ing  
t h e  de f l ec t ions  v1 and v of the p l a t e  i n  any cross  sec t ion  2 

u. - -- c12 (~,z-p2) - c,, In P ----[ P 112 +pa (In P- I ) ] .  
R 2 -  2 R 8nD (I. 143) 

I n  order t o  determine the maximum de f l ec t ion  i n  formula (1,142) w e  must set /62 
p = r. 

I n  order t o  determine the stress ac t ing  on any p l a t e  cross  sect ion,  w e  
must have the  expression f o r  t he  bending moment. 

The bending moments i n  the  r a d i a l  p and the  t angen t i a l  t d i r ec t ions  act 
a t  any cross  sec t ion  of t he  p l a t e .  
formula (1.133). 

The r a d i a l  bending moment is determined by 

t A similar dependence holds f o r  t he  bending moment M 

(1.144) 

Taking the  f a c t  i n t o  account t h a t  t he  bending moments ac t ing  i n  the  r a d i a l  
d i r e c t i o n  are the l a r g e s t  , we may confine ourselves t o  inves t iga t ing  expression 
(1.133). According t o  equations (1.115) , (1.116) , (1.118) and (1.119) , t h e  
bending moment M 

w i l l  have the  following form 

act ing i n  the  inner s ec t ion  of the p l a t e  e < p < r ) P I '  k 

For the  ex te rna l  s ec t ion  of t he  p l a t e  ( rk  < p < R) w e  obtain the  following 
i n  a s lmi l a r  manner 

The bending moments a t  any p l a t e  cross  sec t ion  which is chosen a r b i t r a r i l y  
may be determined by equations (1.145) and (1.146). 

Se t t i ng  p = r i n  formula (1.145) , w e  obtain the expression f o r  t he  bending 
moment i n  the  r i g i d  cen te r ,  which is a calculated value,  sdnce the maximum 
value of t he  bending moment M i s  

P 
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The bending moment at the plate seal may be found by setting p = R in 
formula (I. 146) 

P 
~ , ( 1 + ~ ) - ~ ( 1 - v ) + - ( I - v )  Ra 8nD 1. (I. 148) 

On the basis of the value (1.147) of the maximum bending moment , we may. 
determine the maximum stress 

where h is the plate thickness. 

In addition, we obtain the expression for the relative ring deformation 
(see figure 37). According to formula (1.130), the absolute change in the 
ring radius rk comprises 

6 (kR)2 (Mp2 -MpJ Ar =- 
EbH’ 

(I. 150) 

Taking into account the values of the integration constants (1.138), we 
obtain 

P 
8nD 

e,, - c,, = - 

and correspondingly 

EJx[kz- ($-)2] [?\+ 2 In. k - EJ, (1 - k2) x I 
(1.151) 

(1.152) 
P 

4RD 
C,, - C,, = - .r2-  

Substituting expressions (1.151) , (1.152) in formula (1.150) and performing 
transformations, we obtain 

(1.153) 

P E J g z (  I n ~ ( l - k Z ) - k z h k  R 

( h w  (Mp2 - Mpl) = - 

+ E J , ( I - k z )  1- - [ ( i R ) 2 ] ) ’  

Substituting the expression obtained in equation (1.130) and substituting 
= -  bH3 in the numerator, we obtain the. computational formula in its general 

Jx 12 
form for determing the ring deformation 
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I 

We may determine the relative ring deformation from the following relation- /& 
ship 

(1.155) 

from which we obtain the following, on the basis of Hooke’s law 

omax = E e m a x *  (I. 156) 
We may represent expression (1.155) in the following form 

Subs ti tut ing 
EbH’ a&J, = - 

12( 1-+) 12 ’ 
Ehs D =  -- 

in this equation, we obtain 

Introducing the following notation 

we may write 

3P 
ITEH Employing 7 = m to designate the constant factor, we obtain the 

following dependence in the final form 

(I. 157) 
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which is shown graphical ly  i n  Figures 39 and 40. 
b 1  E m a x  A l l  t h e  curves of - = f (a) w e r e  compiled f o r  t he  constant r a t i o  - = - 

m R 42, 
with a constant height  of t he  r i n g  H = 10.35 mm and an outer radius  of R = 42 mm. 
Several conclusions may be derived from the  graphs, which may be employed t o  
design elastic elements of the type under consideration. 

&ma 
m 

13 

- 

72 
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.8  
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/6$ 

1 
7 Figure 39. Graphs of t he  Dependence E m a x  = f (k) f o r a  = - anda = 0. 

m 
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/66 The problem of t h e  r i n g  loca t ion  (radius  rk)  is  very important f o r  ob- 
t a in ing  i ts  maximum deformation (Emax). 

t h a t  the radius rk may be advantageousZy seZected cZose t o  the inner radius r 
1 of the  e l a s t i c  element. For example, f o r  p l a t e s  with the  coe f f i c i en t  ab= - 7 

(see Figure 39) we can recommend k = 0.25 and 0.35. 

The graph of t h e  function €maX shows 
m 

Figure 40. Graph of t he  Dependence 
1 1 
2 4 * 

%U& =f (k) f o r  a b  = -andab =- 
It1 

The dependences m Emax - - f ( k )  a l s o  show t h a t ,  within d e f i n i t e  limits of a /67 
Emax increases with a decrease i n  t h i s  ratio.  change i n  a h  = E the quantity 7 

r I n  addi t ion,  a comparison of t he  curves compiled f o r  d i f f e r e n t  values of - R Smax shows t h a t  t he  quant i ty  - decreases with an increase i n  t h i s  r a t i o .  For 

purposes of comparison, t ne  curves corresponding t o   the^ case of a s o l i d  p l a t e  

h 

m 

60 



without a r i n g  (3 = 0) are p lo t t ed  by dashed l i n e s  i n  the  graphs. 
show t h a t  a decrease i n  the r i n g  width b increases  i t s  deformation. 

These curves 

A study of the funct ion (1.157) makes i t  possible  t o  determine the  r a t i o  

a h = k, ,at which the  

the  funct ion (1.157) 
optimum re l a t ionsh ip  

quant i ty  €max acquires its maximum 

i n  terms of H and s e t t i n g  i t  equal 

value. D i f f e ren t i a t ing  

t o  zero, w e  obtain the  

( I .  158) 

Let-us give a numerical example. L e t  us set  P = 1000 kgf, R = 42 mm, r = 
= 6 mm, r k  = 23.5 mm, H = 10.35 mm, b = l m m ,  h = 4.35 mm; t he  p l a t e  material 

is steel  40X, q, = 100kgf/mm , E - 2 . 1  * 10 

Subst i tut ing the numerical values 

2 6 kgf/cm2 and v = 0.3. 

i n  expression (1.138), w e  may determine 
the  in t eg ra t ion  constants: Cll = 270 - 10-5 l / c m ;  CZ1 = 346 10-5 cm; C12 - - 
= 214 l / c m ;  C22 = 650- cm. 

I n  addi t ion,  employing formula (1.142) and s e t t i n g  p = r ,  w e  may f ind  the  
maximum de f l ec t ion  of the p l a t e  vBaX = 0.0132 cm. 

L e t  us  determine the bending moments act ing a t  the  r i g i d  center  and a t  the  
seal. 
from expression (1.147): 

The maximum bending moment a t  t he  cross  sec t ion  p = r may be obtained 

The bending moment a t  t he  p l a t e  cross  sec t ion  p = R may be found according 
t o  formula (1.148) 

Mp2 = 7 & g f c ~ .  

According t o  formula (1.149), w e  may now determine the  maximum stress 

amax = 7150kgf/c&. 

Based on equation (1.154) we may ca l cu la t e  t he  absolute  displacement of 

Ars = - 0,00256 CM. 

t h e  bending moment ac t ing  upon t h e  r i n g  must be*changed t o  t h e  opposite d i r ec t ion .  
The relative deformation of the r i n g  equals 

t he  end point  of t h e  r i n g  cross  sec t ion  A r k :  

The minus s ign  i n  the  r e s u l t  obtained ind ica t e s  t h a t  t h e  d i r e c t i o n  of /68 

E,,, = 0,00109, 
and, consequently, t h e  maximum stress ac t ing  a t  the  edge r i n g  f i b e r s  is 
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max oK = Ee,,, = 229&gfl~~s. 

I n  addi t ion,  i t  is  of i n t e r e s t  t o  compare the r e s u l t s  obtained with the  
computational da t a  f o r  a customary c i r c u l a r  p l a t e  without a r ing.  
the following f o r  a c i r c u l a r  p l a t e  with a clamped outer  edge, having a r i g i d  
center  r and loaded by the force P i n  the center ,  according t o  the e w a t i e n  
(1 8) 

vmax = 0,0145 CM. 

W e  obtained 

This value exceeds the  r e s u l t  obtained based on formula (1.142) by approx- 
imately 10%. 

We may f ind  the maximum bending moment f o r  a c i r c u l a r  p l a t e  without a r i n g  
from expression (1.9) 

fip (,,,,;I = - 236 kgf .dm 

which exceeds the r e s u l t  obtained according t o  formula (1.147) by approximately 
5%. 

This comparison shows t h a t  f o r  pre2im.ina.q determination of the m a x i m  
s tress  and maxi” defZection of  the pZate f o m Z a s  ( 2 . 8 )  and ( 2 . 9 )  mag be 
empZoyed. 

The following is  recommended as a preliminary ca l cu la t ion  when s e l e c t i n g  
the  dimensions of an elastic element. 
c i r c u l a r  p l a t e  without a r ing ,  we  may make a preliminary determination of t h e  
maximum stress a t  the cross  sec t ion  p = r ,  s e l ec t ing  the  p l a t e  thickness h so 
t h a t  amax 5 [a ] .  I n  addi t ion,  employing the  graphs of t he  dependence (1.157), 
f o r  t he  determined r a t i o a b  = f (see f igu res  5 and 6) w e  may f ind  t h e  maximum 

of the funct ion and, consequently, t h e  numerical value of the c o e f f i c i e n t  

Employing formula (1.9) f o r  a customary 

R 

r k  k = -  R ’  
Since the stress produced a t  t he  edge r i n g  f i b e r s  may be given f n  seve ra l  

cases encountered i n  p rac t i ce ,  based on formula (1.156) w e  may f ind  the  r e l a t i v e  
deformation of the r ing  Emax-.maxuk. 

m = ‘a and knowing the  value max, based on the  graphs compiled f o r  , the given 

r a t i o  B = E, w e  may determine thz  computational curve and the  corresponding 
h value of t he  coe f f i c i en t  a h  = - with which the  p l a t e  thickness is determined. H’ 

I f  t he  value of h is less than the value assumed i n  the  preliminary 

Determining t h e  constant coe f f i c i en t  

3P EE 
b 

/69 

calculat ion,  another check must be made of t he  e f f e c t i v e  maximum stress, em- 
ploying the  formulas given above with allowance f o r  t he  concentric r i b .  

I n  conclusion, l e t  us compare the  t h e o r e t i c a l  da t a  with t h e  experimental 
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Elas t ic  elements with the  following parameters w e r e  prepared i n  order t o  
make an experimental check: k = 0.03; 0.5 and 0.7 i n  the case ab = 1 , B = 1 

7 42 
and ah = 0.42. The experimental data  f o r  three e l a s t i c  elements are shown i n  

Figure 39 by the  black dots.  
experiment values and the computational values.  

A comparison reveals  a good agreement between the 

4. E l a s t i c  Elements i n  the  Form of a Body of Revolution 

Another type of elastic element which employs the  winding of s t r a i n  gauges 
is an element consis t ing of two c y l i n d r i c a l  casings 1 and 2 connected with a 
r i g i d  r i n g  3 (Figure 41) (Ref. 26, 22). 

Figure 41. Elast ic  Element i n  the  Form of a Body 
of Revolution 

Due t o  the  difference i n  the r a d i i  R2 and R1, under the influence of t he  

concentrated force P the casings and consequently the r ing ,  which i s  connected 
with them, are deformed. The deformation of the r i n g  3 is employed t o  obtain 
the e l e c t r i c  s i g n a l  from the  s t r a i n  gauge r i n g  which is  mounted on the s i d e  

system. I f  the d i r e c t i o n  of t he  force i s  t h a t  shown i n  Figure 41, then the  
w i r e  mounted on the  lower sec t ion  of t he  r i n g  is  elongated, and the  w i r e  mounted 
on the  upper sec t ion  of the r i n g  under a c e r t a i n  stress i s  compressed. 

surface.  I n  t h i s  respect ,  t h i s  system does not d i f f e r  from the  preceding /70 

I n  the case of comparatively s m a l l  geometric dimensions, such an elastic 
element has g rea t  r i g i d i t y .  It may be employed f o r  considerable loads (on the  
order of 100,OOOkgf). The t ransverse cross  sec t ion  can have a very d i f f e r e n t  
form. When the form of the t ransverse cross  sec t ion  is se l ec t ed ,  an attempt 

("Several e l a s t i c  elements of t h i s  type w e r e  t e s t ed  a t  t h e  electrotenso- 
m e t r i c  laboratory of t h e  Nauchno-Issledovatelqskiy i Konstruktorskiy I n s t i t u t  
Ispytatel 'nykh Mashin, Priborov i Sredstv Izmereniya Mass. ("a). 
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must be  made t o  obta in  the  maximum s igna l ,  other  condi t ions being equal  (from 
t h i s  point  of view, the re  is  a c e r t a i n  optimum va r i a t ion ) .  
be made t o  produce an elastic element which is simpler t o  manufacture. 
addi t ion ,  t h e  form se lec ted  f o r  t he  r i n g  t ransverse  c ross  sec t ion  must no t  lead 
t o  un jus t i f i ab ly  complex ca lcu la t ions ,  which a l s o  w a s  taken i n t o  account i n  t h i s  
study. 

An attempt must a l s o  
I n  

Figure 43. Calculat ional  Diagram of 
3 a Cyl indr ica l  Casing 

L e t  us  study a r i n g  having a 
rectangular  c ross  sect ion.  An elast ic  
element is  customarily designed so t h a t  
t h e  r a t i o  of t he  cy l ind r i ca l  s ec t ion  
width t o  the  rad ius  of t he  middle 
sur face  is s m a l l .  Therefore, le t  us  
employ t h e  theory of t h in ,  symmetrical 
c y l i n d r i c a l  s h e l l s .  

Figure 42. Calcula t iona l  Diagram of 
an Elastic Element Separating t h e  elastic element 

(Figure 41) i n t o  the  component p a r t s  
and replacing t h e  ac t ion  of t he  

discarded p a r t s  by the  corresponding stresses, w e  ob ta in  the  computational f 2 - l  
diagram (Figure 42). I n  order  t o  determine the  unknowns X1, X and X2, X which 

represent  t h e  forces  and moments d i s t r ibu ted  over t he  s h e l l  edges, w e  must employ 
t h e  condi t ions of compat ibi l i ty  f o r  t he  displacement of cy l ind r i ca l  s h e l l s  1, 2 
and the  r ing  3. 

3 4 

(1.159) I v, + u2 == 0; 
e, + e, = 0; 
8, + ex = 0; 
v2 + v, = 0, 

where v and 0 are t h e  displacements of s h e l l  1; 1 1 
v2 and e 2  displacements of s h e l l  2; 

vk and ek displacements of t h e  r i n g  3. 

I n  order t o  s a t i s f y  condi t ion (1.159), w e  must determine t h e  displacements 
of the  s h e l l s  and t h e  r ing ,  and w e  must express them i n  terms of the  unknown 
quan t i t i e s  X X2, X and X4. L e t  us  study a c i r c u l a r  cy l ind r i ca l  s h e l l  1 having 1’ 3 
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t he  radius  R1. 

stress X 

One edge of the s h e l l  is r i g i d l y  clamped, and the  d i s t r ibu ted  

and the  moment X2 act on the  f r e e  edge (Figure 43). 1 

The general  case of t he  theory of t he  de f l ec t ion  of a t h i n  c y l i n d r i c a l  
s h e l l  has been s tudied i n  the works (Ref. 4, 12, 14). 

The r a t i o s  of the dimensions f o r  t he  c y l i n d r i c a l  s ec t ions  of t h i s  type of 
elastic element are such t h a t  t he re  are shor t  cyl inders ,  according t o  standard 
terminology (Ref. 4). Nevertheless, i n  t he  overwhelming majority of cases, i t  
is possible  t o  employ a so lu t ion  f o r  t he  so-called long c y l i n d r i c a l  s h e l l s .  
It is thus necessary t o  determine the  magnitude of t he  e r r o r  which is introduced 
i n  the  so lu t ion  due t o  the s impl i f i ca t ions  assumed. Thus, w e  s h a l l  not  make 
simplifying assumptions regarding t h e  s h e l l  length. I n  the  absence of i n t e r n a l  
pressure,  t he  d i f f e r e n t i a l  equation f o r  a c i r c u l a r  c y l i n d r i c a l  s h e l l  loaded 
symmetrically with respect  t o  the longi tudinal  a x i s  has the  following form, as 
is w e l l  known 

d4v - + 4a:v = 0, 
dx' 

where 

(1.160) 

(1.161) 

L e t  us  introduce t h e  dimensionless coordinate 

(I. 162) E = a,x. 

To replace t h e  va r i ab le s ,  le t  us successively d i f f e r e n t i a t e  t he  funct ion /72 
v(<)  = v(a x): 

do do dc do v ' = - =  -.-.=- 
dx df dx d€, 

Subst i tut ing the  value obtained v I V  i n  equation (1.160), we  obtain 

d'o + 4v = 6. 
dS4 

(1.163) 

The so lu t ion  of equation (1.163) i n  the  form advanced by A. N. Krylov has 
the  following form 

(1.164) 

1, Y q ,  Y and Y are the  Krylov functions; where Y 3 4 

C1, C2, C and C4 - the constants determined from the boundary conditions 3 
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of the problem. 

The Krylov functions have the following form: 

Y, = y ( c h 5 s i n E  fshE-cosE); 

Y3'= -sh € - s i n k  

Y ,  = - (ch Esin 6- sh 5 . ~ 0 ~ 4 )  

Ya = ch C;. COS 5; 
1 

1 
2 
1 
4 

(1.165) 

and, as is known, they have the following properties: in the case 5 = 0 Y1(0) = 

= 1; Y2(0) = Y3(0) = Y4(0) = 0. 

Let us place the origin at the seal. In order to determine the arbitrary 
constants, we have the following boundary conditions: 

For E = ail 
(1.166) 

where D -- the cylindrical rigidity, equals 
D = -  

12 (1 - v2) 
Satisfying condition (1.166), in the case 5 = 0 we obtain 

' .  Eh3 

c, = 0; c, = 0. 

The conditions at the shell edge lead'to the following two equations: /73 

Solving equations (1.167) concurrently, we obtain: 

(1.167) 

(I. 168) 

+ c, = 4YI ( % f ) l Y 4  (ad )  

4y* (aI l )Y1(al f )  + 4 D 4 Y 4  (all)  

With allowance for the statements given above, we may rewrite the solution 
of equation (1.163) in the following form 

ZJ = cay3 + c4y4, (1.169) 
may be determined according to formulas (1.168). wherefithe constants C3 and C 4 

We may find the angle of rotation of the shell cross section by differentiat- 
ing expression (I. 169) - 

(I. 170) 
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In order 'to determine the size of the quantities contained in equations 
(1.169) and (1.170), let us present a numerical example. Let us assume that 
the following geometric dimensions of the shell are close to those which are 
customarily employed: R1 = 4.1 cm; h = 0.25 cm; R = 1.5 cm. 

For the subsequent discussions, we should note that the zone in which the 
edge forces act in practice is delimited by a narrow band at the loaded edge, 
whose width is on the order of half of a wavelength. 

Therefore, it is customarily assumed (Ref. 4) that a long cylinder is one 
in which the length is greater than half of a wavelength 

which yields the following in the case v = 0.3 
1 > 2 , 5 m . ,  

In our case, k = 2.5 J4.1 0.25 = 2.5 cm. 
(1.171) 

Consequently, we have a short cylindrical shell, since condition (1.171) 
is not satisfied. 
and for this ratio of the shell geometric dimensions, we may employ the 
expressions for long cylinders with an accuracy which is sufficient for engineer- 
ing calculations. 

However; we shall show that in the case under consideration 

Substituting the expressions (1.168) in the solution (1.169), we obtain /74 
the value of the maximum deflection in the case 6 = e ( % )  = aR 

(I. 172) 

(1.173) 

Taking the values of the functions (1.165) into account, we obtain 

(I. 174) 
-- ' ch (alf). sh (all). 

4 

We may find the numerical value of the dimensionless coordinate 5 for x = 9, 
from expressions (1.161) and (1.162): 

E ( l )  = all = 2,2. 

A comparison of the numerical values shows that the first term in expression 
(1.174) may be disregarded. 

Changing from hyperbolic functions to exponential functions, we obtain 
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Disregarding the  quant i ty  ( a ) ,  w e  may assume t h e  following with a g rea t  
degree of accuracy 

1 
y, (all)* Y' (all) - y* (ad ) .  YI (a& = - - 16 e2E (l) .  

Similarly,  w e  may f ind  the value f o r  the denominator of expression (1.173) 
1 x - $E (0. 

4 y 3  ( U g f ) *  '4 (a l l )  + Yf(aif)  8 

Consequently, expression (1.173) assumes the  following form 

(1.175) 

(1.176) 

When the  values of (1.175) and (1.176) are subs t i t u t ed  i n  the  formula f o r  
de f l ec t ion  (1.172), we  obtain 

x2 XI v1 =,- -- a 

2Da: 2Da: 
(1.177) 

Expression (1.177) f u l l y  coincides with the  maximum displacement obtained 
from the theory of a long s h e l l  loaded a t  the  edge by t h e  d i s t r i b u t e d  fo rce  X, 

and by the  moment X2 (Figure 43). Making s imi l a r  

t he  following.expression f o r  the maximum angle of 
s ec t ion  1: 

x1 X t  -+-. 
=-2Da: Da, 

.I. 

transformations, w e  obtain 

r o t a t i o n  of t he  s h e l l  cross  

(1.178) 

L e t  us  f ind  the  maximum values f o r  t he  de f l ec t ion  and t h e  angle of r o t a t i o n  
f o r  the second s h e l l  i n  t h i s  way: 

where 

v 2 = - - - ,  x 3  x 4  . 
.2Dai ZDa', 

(1.179) 

(1.180) 

(1.181) 
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I 

It is  assumed t h a t  t h e  thickness  of both s h e l l s  equals h. It i s  tnus 
apparent t h a t  when a22 rea2 constructions are caZcuZated, the substi tution of 
the equations for a short she22 by  the eccpressions for  a Zong she22 Zeads t o  an 
insignificant error. 

L e t  us  i l l u s t r a t e  t h i s  with a numerical example. L e t  us  determine the  
prec ise  value of t he  displacement of t h e  s h e l l v  according t o  formula (1.169), 

and l e t  us  compare t h e  r e s u l t  obtained with t h e  approximate va lue  which is  
determined by formula (1.177). 

1 

For e ( % )  = 2.2, w e  have the  following values  of .the 'Krylov function: 
= 1.5791. L e t  

4(2.2) 
= 1.8018; Y 

3 e . 2 1  
= 0.5351; Y 

2(2.2) 
Y1(2.2) = - 2.6882; Y 

u s  inves t iga t e  t h e  case of t h e  loading of t he  s h e l l  1 by t h e  moment X2. 
ing t o  formula (1.169), w e  ob ta in  the  following with allowance f o r  t he  expression 
(1.168) 

Accord- 

Subs t i tu t ing  t h e  values  of t h e  Krylov funct ion i n  t h e  expression obtained, /76 
w e  have 

u, = 0,484 3. 
Da? 

The corresponding approximate value of the  displacement may be determined 
according t o  formula (1.177) 

Comparing the  r e s u l t s  obtained, w e  f i nd  t h a t  t he  e r r o r  due t o  replacing 
the  p rec i se  equation (1.169) by the  approximate expression (1.177) amounts t o  
approximately 3.36%. 

Therefore, w e  s h a l l  employ the  
expressions f o r  long cy l ind r i ca l  s h e l l s  
(1.177) - (1.180) everywhere below with 
an accuracy which i s  s u f f i c i e n t  f o r  
engineering ca lcu la t ions .  

I n  addi t ion ,  l e t  us  study t h e  r ing  
3 and the  deformation of t h i s  r i n g  may 
be expressed by means of t he  ex terna l  
fo rce  P and the  unknown quan t i t i e s  
X1, X2,  X and X W e  shal l  assume t h a t  

t h e  r ing  i s  a beam having s m a l l  curvature,  
s ince  t h e  r a t i o  of t he  r i n g  width t o  
i t s  rad ius  i s  s m a l l .  It i s  assumed t h a t  
t he  t ransverse  c ross  sec t ion  of t h e  r i n g  

3 4' Figure 44. Calculat ional  Diagram of 
the  Ring 
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Figure 45. Element of t h e  Ring 

r ing )  produced by the  a c t i o n  of the fo rce  

where 

is  rectangular 
and a width of 

with a height  Of bk 
hk-. L e t  us introduce 

the  nocation B = &. I n  p a r t i c u l a r ,  
hk 

i n  the  case Bk = 1 t he  r i n g  has a 
square cross  sect ion.  
we  s h a l l  disregard the  mechanical 
r e s i s t ance  of t h e  s t r a i n  gauge mounted 
on the  r ing.  

J u s t  as previously,  

The notat ion f o r  the geometric 
dimensions of t h e  r i n g  and t h e  fo rces  
ac t ing  upon i t  may be seen i n  Figure 
44. 
i n  t h e  r i n g  cross  sect ion.  L e t  us 
i nves t iga t e  successively the  inf luence 
of t he  individual  ex te rna l  loads 
based on the l a w  of the independence 
of the ac t ion  of the forces .  The 
i n t e n s i t y  of the moment (d i s t r ibu ted  
over t he  mean circumference of t he  
P equals 

L e t  us f ind  the  bending moment 

Representing t h e  e f f e c t i v e  moments i n  the  form of vectors  (see Figure 38) 
of t he  vectors  on the  v e r t i c a l  a x i s ,  and compiling the  sum of the project ions 

w e  obtain 
9t x 

2M, = J m, sin +ds = J mlRK sin +d+. 
0 0 

We thus obtain 

(1.182) 

Expression (1.182) determines the bending moment produced i n  the r i n g  cross  
sec t ion  

I n  

and the  

and l e t  

x3 

due t o  the fo rce  P. 

addi t ion,  l e t  us ca lcu la t e  the ac t ion  of the 

moments X 2,  X4. L e t  us separate  the element 

us f ind  the d i f f e r e n t i a l  of the t o t a l  moment 

/77 

1' x3 d i s t r i b u t e d  forces  X 

of t he  r i n g  (Figure 45), 
due t o  the  forces  X and 1 
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from which w e  obtain 
2% 2x 

W e  f i n a l l y  obtain 

The magnitude of this moment  equals 

Calculating the  sum of the projectgons of t h e  moment vec to r s  s imi l a r ly  
t o  the manner which w a s  used f o r  a s t r a i n  gauge having the  form of a p l a t e  
with a r i n g  (see Figure 38), w e  f ind  the  expression f o r  the bending moment 

mzRKsinqd+ = @ X [  

0 

from which w e  obtain 

M, = 2 [x1 (R" - $) + x3 (R" + 31 . 

L e t  us study the  ac t ion  of t he  d i s t r i b u t e d  moments X and X4 2 
2x 2x 2x 2 r  

0 0 0 0 

from which w e  obtain the following, a f t e r  performing in t eg ra t ion  

T h e  magnitude of this moment equals 

m, = 

W e  may f ind the  bending moment j u s t  as previously 
x 

2M3 = msRX sin +d$ = 
0 s 

(1.183) 

/18 
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from which w e  obtain 

Summing the  expressions (1.182), (1.183) , and (I.184), we obtain the  value 
of t he  bending moment act ing i n  the r ing  cross  sec t ion  

Introducing t h e  notat ion 

w e  may write the following i n  the  f i n a l  form 

Knowing the  expression f o r  t he  bending moment (1.185), we may determine 
the displacement of the r ing.  /79 

The maximum stress i n  the r i n g  equals 

where W is the  moment of r e s i s t ance  

P; w=--. 
6 

W e  may f ind  the maximum r e l a t i v e  deformation of t he  r i n g  from the following 
expression 

___ maxa, - -. Mbend 
E WE 

On the  other hand, we obtain the following from geometric considerations 

(I. 187) Ell,,, = 

E,,, = v. ; (1.188) 
Ru 

_ _  P*&, 
K 2 X. (I. 189) 

W e  obtain the following from expressions (1.187) - (1.189) 

ek = Mbend % 
EJk 

where 

(1.190) 
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is t h e  moment of i n e r t i a  of t h e  r i n g  c ros s  sec t ion .  

According t o  formula (1.189), w e  ob ta in  

(1.191) 

Subs t i tu t ing  the  value of t h e  r i n g  bending moment i n  t h e  expressions (1.190) 
and (1.191), w e  ob ta in  

Thus, a l l  of t h e  terms contained i n  t h e  condi t ion of compat ibi l i ty  f o r  
t he  displacements (1.159) may be  expressed i n  terms of t h e  ex te rna l  load and 
the  unknown force  f ac to r s .  E 

The use of t he  f i r s t  of condi t ions (1.159) leads  t o  the  following equation 

(1 - k )  ( 1 - 0,512) I/R,h XI - v3-( 1 - v2) ( 1 - k )  X, - ( 1 + h) ( 1 .+ 19 
+ 0,5R) fi X, + v3(1--2, (1 + k)X,,  = 0. 

Sat i s fy ing  the  second condi t ion (1.159), w e  ob ta in  
.~ 

(1  R,$XI - 2 y 3  (1 - > d 2 )  (1 -0,5R) X, - (1 + 
..___ 

-I- k )  R,h-"3 + 2 v3 (1 - v') ( 1  + 0,5k) I/R,h X ,  = 0. 

Correspondingly, f o r  the  condi t ion 8 + ek = 0,  we  ob ta in  

CX. 1931 

[3aUh,""R: (1 - k )  - 1 / 3  (1 - v') P;h:hR, (1 - h)  ] X I  + 
~__  

+ [GA"&':(I-k) + 2 4 J - [ 3 ( 1  - - ~ ' ) ] ~ p ~ - h : ( l - 0 , 5 k ) I / ~ ] X 2 +  (r. 1941 

P 
, E  

+ 3?,hKh3R: (1 + k )  X ,  -1- 611"R: (1 + k) X ,  - 3kuh3R - -0, 

and w e  ob ta in  t h e  following from the  four th  condi t ion of compat ibi l i ty  f o r  
t h e  displacements 
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+ 16h2Z?E (1 + k )  - 2 1/ 3 (1 - \a') P;Iz;TR, ( 1  + k)] X, - 
P - 3hKh2R, - = 0. 
x 

(I 195) 

The following simplification is made in equations (1.192) .-. (1.195): 

1 / ~ ~ 1 = = 0 , 5 k ; _ l / l + k ~ ~ + 0 , 5  k. 
Consideration of the third term of the binomial series sh&s that for 

k = !b- = the error of this approximation aoes not exceed 0.25%. 2Rk 7.2 

The form of equations (1.194) and (1.195) shows that their summation 
leads to an expression having a simpler form: 

;/3 (1 - v2) P J Z ,  I/G( 1 - k )  x, - 2 {3 (1 - 9) paK( 1 - 
- 0 , 5 k ) X ,  + 2 4 h  (1 + k )  (1 + 0 , 5 k ) X 3 - 2  4J3  (1  - y2) vG(l + 

+ k)X4 = 0. 

(I. 196) 

We now have the four equations (1.1921, (1.193), (1.195) and (1.196) for 
X2, X and X4. Solving these equations, we /81 1' 3 determining the four unknowns X 

obtain 

+ 24 1 / 3  (1 - v2) pJz,/i~R 1/G + 24 ;/3 (1 - v2) R3' 

p2;/i3(1-v2)]3PKh,(1 -1,5k) +21 /3 ( I -v2 )  E / G ( l  -k) . 
p?z>'R, f ' 

X, = 3hA2- 
6 (1 - Y') P:hi 6 + I2 

+ 24 1 / 3  (1 - v Z )  p J z f i 2 R , 1 / G  + 24 v 3  (1 --*) R i h 3 .  

x 

(1.198) 

(I. 199) 

The quantities X 

4 

and X 1 3 have the dimensionality of forces distributed over 
length, and X2 and X have the dimensionality of distributed moments. 
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The above expressions show t h a t  XI ,> X 

clusion is thus reached: a cyZindricaZ' she l l  Z ( see  Figure  42)--undergoes greater  
s t r e s s  as compared w i t h  the cyZindricaZ sheZZ 2 .  

I n  addi t ion,  subs t i t u t ing  the values of (I. 197) - (I. 20-09 i n  ,expression 
(1.185), we may determine the  bending m o ~ e n t  o f ' t he  r i n g  

and X2 > X4. The following con- 
3 

-I I P 

\ +24)/3(1--.12)3 p&,&2R,c+24 v3 (1 - ~ p ? i h , l / ~ , h j  

Assuming t h a t  t he  thickness of t he  s h e l l  w a l l  H = 0 i n  the  r e l a t ionsh ip  
obtained, w e  may f ind  the  bending moment f o r  a f r e e  r i n g  

( I .  201) 

Thus, . the  thinner  the thickness of the w a l l s  h of the s h e l l ,  the more 
correspond t o  the value of (I .201). 

/82 
closely does the computational r e s u l t  

L e t  us introduce the following notat ion 

(I. 202) 

W i t h  allowance f o r  these notat ions,  the expression f o r  %end acquires the 

following form 

%end= M~ 

The max imum stress i n  the  r ing  may be found according t o  formula (1.186) 

max as = a. 

where oo i s  the  max imum stress of the  f r e e  ring: 

Employing Hooke's l a w ,  w e  may f ind  the  expression f o r  the r e l a t i v e  defor- 
(1 - v2) p y  mation of the r i n g  
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where 

(I. 205) 

Employing formula (1.204), w e  may design the elastic element s o  t h a t  t h e ’ e l e c -  
t r i c  s i g n a l  i s  adequate i n  terms of magnitude. 

The function = f(h) is represented graphical ly  i n  Figure 46, from 

w h i c h  i t  may be seen that i n  the case h = 0,  the function acquires the value of 
(1.205), which equals the relative deformation of a f r e e  r ing  loaded over t he  
edges by d i s t r i b u t e d  forces.  When the  r e l a t ionsh ip  = f (h)  w a s  compiled, /83 

i t  w a s  assumed t h a t  a l l  other  parameters 
of the elas t i c  element w e r e  constant : 
% = 3.6 cm;, % = 1 cm; Bk = 1; v = 0 . 3 .  

The graph presented i n  Figure 46 shows 
t h a t  i n  order t o  obtain the Z q e s t  sig- 
naZ of the eZectric s t ra in  gauge, it is 
advantageous t o  se lec t  as smaZZ a thick- 
ness as possible of the CyZindricaZ she21 
h. It is apparent t h a t  the s e l e c t i o n  of 
this value i s  l imited by the l a r g e s t  
stress act ing a t  the danger point.  

Figure 46. Graph Showing the 
Dependence of 

L e t  us study the problem of stresses. 
The computational diagram (see Figure 42) 
shows that c y l i n d r i c a l  shells 1 and 2 are 
loaded over the edge by uniformly d i s t r i -  

-- Emax buted forces  and moments, and a l s o  by 
EO d i s t r i b u t e d  forces  act ing normally t o  the 

cross sect ion.  The cross sec t ions  i n  which 
the  edges of the s h e l l s  are combined with 
the r ing  are dangerous. 

- f (4. 

I n  these cross 

3 sec t ions ,  the bending moments due t o  the  d i s t r i b u t e d  r a d i a l  forces  X1 and X 
equal zero, and the bending moments due t o  the  r a d i a l  moments X2 and X acquire 

their maximum values. Allowance m u s t  be  made f o r  t he  ac t ion  of the force which 
is normal t o  the cross sec t ion  and d i s t r i b u t e d  over the edge. 

4 

W e  shall  study a cross sec t ion  connected t o  the c y l i n d r i c a l  shell l w i t h  
the r ing  3 (Figure 42). 
buted over the edge of t he  shell 1, w e  obtain 

Taking i n t o  account the ac t ion  of the moment X2 d i s t r i -  

(I. 206) 

Subs t i t u t ing  the value f o r  X2 i n  expression (1.206) according t o  (1.198) 

and performing transformations, we  obtain 
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The ac t ion  of t he  force  normal t o  the shel l  cross  sec t ion  leads t o  the  
normal stress 

o r  i n  o ther  words /84 
(I. 208) 

The maximum stress ac t ing  a t  t he  danger poin t  of the e l a s t i c  element may 
be  determined by the  sum of the  stresses (1.207) and (1.208). 

In  conclusion, l e t  us present  a numerical example. L e t  us give an e las t ic  
element w i t h  the  following parameters w h i c h  determine i t s  construction: The 
concentrated force  P = 5000kgf; the average radius  of the  r ing  % = 3.6 cm;  
he ight  of t h e  r ing  cross sec t ion  bk = Bk\ = 1 cm; B 

t he  cy l ind r i ca l  s h e l l  h = 0.25 cm. 

= 1; w a l l  thickness of k 

The ma te r i a l  of the  e las t ic  element i s  40X steel: t h e  y i e l d  poin t  is 
6 o 

c ien t  i s  v = 0 . 3 .  

= 10,000kgf/cm2; modulus of e l a s t i c i t y  is E = 2.1'10 kgf/cm2, Poisson coeff i -  T 

W e  may f ind  the r e l a t i v e  r ing  deformation based on formula (1.204), subs t i -  
t u t ing  the  values of the  following coe f f i c i en t s  i n  i t :  

E,,,,  z= 0,00046 - h 1 h 1  
1 4 , 4 ,  hp = -= -- h K  1 

1 = - = - - -  k=- = - a  k 
2RK 7,2' R, h,  4 7 

The m a x i m u m  stress of the r ing  equals 

rnax aK = E,,,,. E = 970kgf /cm 2 

I n  addi t ion,  le t  us ve r i fy  the stress a t  the danger poin t  of the s h e l l .  W e  
obtain the following according t o  formula (1.207) 

max ;hzf750 kgf /CIU 2 

and, according t o  expression (I. 208) , 
a com- - lOOOkgf/cm~ 

2 
U t o t =  5750 k g f / a  , 

T h e  t o t a l  maximum stress a t  the danger poin t  comprises 

T h e  computational r e s u l t  shows that t h e  t o t a l  stress of the s h e l l  i s  q u i t e  
The s t r eng th  reserve determined by the y i e l d  poin t  of t he  material com- large.  

p r i s e s  approximately 1.75. Attent ion must a l s o  be  ca l l ed  t o  the  r a t i o  of the 
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stresses produced by the  de f l ec t ion  and the  compression: the latter comprises 
about 20% of the  former. Thus, it is  no t  recommended t h a t  t h i s  quant i ty  be 
neglected i n  the  calculat ions.  

It follows from the above numerical example t h a t  the m M m u m s t r e S s  i n  t he  
r ing  3 i s  comparatively s m a l l  a t  the danger po in t  of the cross sec t ion  of the 
s h e l l  1. It is  
th2ckness h ,  s i n c e  the stresses i n  the  s h e l l  are large.  

impossible t o  increase t h i s  stress by a reduct'i-on i n  the  w a l l  

The f a c t  must a l s o  be taken i n t o  account t h a t ,  i n  the case of overstresses  
of the elastic element material, t he re  w i l l  be  a d i f f e r e n t  type of imperfection 
of t he  e las t ic  elements, making i t s  metrological propert ies  worse. Thus, t he  /85 
non l inea r i ty  of the elastic system a l s o  increases .  An increase i n  the  r e l a t i v e  
deformation of t he  r ing ,  which is  necessary i n  order t o  increase the electric 
s i g n a l  of the s t r a i n  gauge, may be obtained by changing the form of the r ing 
cross sect ion.  This problem w i l l  be s tud ied  below. 

I n  conclusion, w e  would l i k e  t o  give c e r t a i n  recommendations f o r  s e l e c t i n g  
the optimum parameters of the e l a s t i c  elements under consideration. 

I n  order that the e l a s t i c  element operate e f f i c i e n t l y ,  i t  is  necessary 
that the g r e a t e s t  stresses occur i n  the region w h e r e  the s t r a i n  gauges are loca- 
ted. This improves the metrological p rope r t i e s  of the e l a s t i c  element and, i n  
p a r t i c u l a r ,  decreases the non l inea r i ty ,  other  conditions being equal. However, 
i t  i s  not  always possible  t o  see t h a t  t he  stresses a t  any point  of the elastic 
element do not  exceed the stresses i n  t h e  region where the s t r a i n  gauges are 
located. 

I n  order t o  simplify the discussion, le t  us introduce the  coe f f i c i en t  A 
which represents the r a t i o  of t he  maximum stresses i n  the  e l a s t i c  element t o  the  
stresses i n  the region where the s t r a i n  gauges are located. I n  our case, i t  has 
the following form 

- maxa . -  -H. 
max o, 

Subst i tut ing the values of (1.207) and (1.203) i n  the expression 
performing transformations, we  obtain 

which y i e lds  the following f o r  v = 0.3 

1, = 1,81 (1 + k )  + 1,41 'vr 2 (1 + 0,5k). 
P 2  

(I. 209) 

(1.209) and 

(I. 210) 

Expression (1.210) shows that the coe f f i c i en t  X is  always g rea t e r  than 
unity. 

However, by means of the r e l a t ionsh ip  (1.210) w e  may select the geometric 
dimensions of t he  elastic element so t h a t  the stress a t  the danger point  of the 
shell cross sec t ion  is no t  excessively high as compared with the stress i n  the 
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ring. L e t  us illustrate t h i s  with a numerical example. 
with t h e  dimensions % = 5 cm, \ = 2 cm, h = 0.1 and f3 

l a  (1.210), we  obtain the quant i ty  A = 3.2. This means t h a t  the stress produced 
by the s h e l l  de f l ec t ion  is approximately th ree  t i m e s  g rea t e r  than t h e  m a x i m u m  
stress i n  the  r ing ,  whereas i n  the  numerical example presented above, t h i s  r a t i o  
w a s  about f i v e  t i m e s  g rea t e r .  
i n  addi t ion by increasing the  height  of t he  r i n g  cross  sec t ion  Bk\. Se t t i ng  

Bk = 2,  f o r  example, w e  obtain A = 2.65. 

For an elastic element 
= 1, according t o  formu- k 

It i s  possible  t o  lower the  stress i n  the  s h e l l  

4,O 
2,o 
0,8 
2,5 
0,8 

/86 

1,70 
1,20 
1,57 
1,70 
0,80 

TABLE 1 

0,60 
0,50 
0,08 
0,60 
0,10 

I 

2,35294 
1,66667 
0,50955 
1,47060 
1,00000 

Maximum 
Load P 

i n  kgf 

- -  
40 000 
20 000 
3 000 
I8 000 
4 000 

0,000395673 
0,000377700 
0,001 183681 
0,000318171 
0,000962619 

I 

0,000432934 
0,000407555 
0.00115546 
0,00031 2977 
0,00104767 

Geometric Dimen- 
s ions i n  cm 

j,65 
k,35 
3,325 
5,65 
1.95 

Deformation 

I 

I P  

Figure 47. Elas t i c  Element with Ring Figure 48. Computational Diagram of 
Having Triangular Cross Section. the Ring. 

Table 1 presents  the b a s i c  parameters of several elastic elements of 
t he  type under consideration. 
values of the relative r ing  deformation ind ica t e s  t h a t  these da t a  agree q u i t e  

A comparison of t he  experimental and calculated 

(l)The e las t ic  elements w e r e  made and tes ted-  experimentally a t  the  elec- 
trotensometric laboratory of the "ma. 
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w e i l .  

It w a s  s t a t e d  above t h a t  t he  s i g n a l  may be increased by changing the  form 
of the r ing  cross sect ion.  One of t he  v a r i a t i o n s  i s  an e l a s t i c  element whose 
r ing has a t r i angu la r  t ransverse cross sec t ion  (Figure 47) .  Being less r i g i d ,  
this r i n g  makes i t  possible  t o  produce an increase i n  the  electric s i g n a l  from 
the s t r a i n  gauge a t  the same ex te rna l  load P. I n  order t o  simplify the so lu t ion ,  
1 e t : u s  set the base and the  height  of t he  t r i a n g l e  i n  the r ing cross sec t ion  equal 
t o  $. 

A computational diagram of the e l a s t i c  element is shown i n  Figure 48. 

It is apparent that w e  may set  v = 0 within an accuracy of terms of 
k(1) 

a higher order of smallness. Therefore, the fourthof  the conditions (1.159) f o r  
the compatibil i ty of the s h e l l  and r ing  displacements may be s implif ied and they 
assume the following form 

1 u1+ u, = 0; 
0, + e2 = 0; 

I 0, + 0, = 0; 
V I  = 0. 

( I .  211) 

v2, 0 and O 2  f o r  the s h e l l  displacements are known /87 1, 1 The expressions v 

from the  preceding problem. 

I n  addi t ion,  w e  must examine the  r ing deformation (Figure 48) and w e  must 
a l so  express the displacement i n  terms of the ex te rna l  force P and the unknown 
quan t i t i e s  Sly X2, X I n  a manner similar t o  that given above, w e  may 

f ind  the  expression f o r  the bending moment act ing i n  the r ing cross sect ion.  

and X4. 3 

(1.212) 

where 

The unknown force X as may be seen from the computational diagram, only 1’ 
extends the  r ing ,  whose inf luence w e  may disregard.  For the cross sect ion 
under consideration, w e  have the following value of the moment of i n e r t i a  

h3 
J = L f i ( _  

48 
and the moment of r e s i s t ance  

h3, w=-. 
24 

According t o  formula (1.190), w e  obtain the value f o r  the angle of rota- 
t i o n  

4Wbend \ 
(I. 213) 0, = 

Ell$ * 
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On the b a s i s  of expression (1.189) f o r  t h e  displacement of a poin t  connecting 
the  shel l  2 w i t h  the r ing  3,  w e  obta in  

24M bend * Rk 
V Y ( 2 )  = - Eti: 1 (I. 214) 

where 

R, = R, + - 2 h, = Rz-  -hK. 1 
3 3 

and (1.214) and taking i n t o  account the s i g n  of the displacements, w e  obtain 
Subs t i tu t ing  the value of the bending moment (1.212) i n  the formulas (1.213) 

(I. 215) 

24PR,  24R: 48R,: 

nEh: Eh, ( : ! .€hi 
e,=-- +;x3 1 + -  + - - X x , ( l - - ) +  

(I. 216) 

Obtaining the values of the displacements (1.215) and (1.216) , expressed 
i n  terms of the ex te rna l  load and the unknown forces ,  and having t h e  unknown 
displacements from t h e  preceding problem, determined by the  expressions (I .177) 
- (1.180) , w e  may s a t i s f y  t h e  condition of compat ibi l i ty  of the  displacements 
(1.211) of the s h e l l s  1 and 2 and the r ing  3: 

(I. 217) 

(I. 218) 

1 / R T X ,  + 4 j / 3  (1 - v 2 )  X ,  = 0. 
(I. 220) 

/88' 

The so lu t ion  of the system of equations (1.217) - (1.220) leads t o  the 
following values of t he  unknowns : 
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(1.221) /89 

(I. 222) 

(I. 223) 

P R,  h3 h, ( 1 - +) x, I- 12- 
= [.t/ 3 (1 --?I3 IJG.h: .+ 12 v G  I/zx (I. 224) 

X R, h2 h, + 48R: h3 

It follows from expressions (1.221) - (1.224) that ,  w i t h  a decrease i n  the 
thickness  h of t he  cy l ind r i ca l  s h e l l  w a l l s ,  t he  values of t he  unknown forces  
and moments decrease. A t  t h e  l i m i t ,  f o r  h = 0,  t h e  quan t i t i e s  X1 = X3 = 0 and 

x2 = x4 = 0. 

Subs t i tu t ing  the  values  obtained (1.221) - (1.224) i n  formula (1.212), w e  
may determine the bending moment of the r ing  

- 

(I. 225) ---I- [3 ( 1  - v 2 )  J 3  1/R,h h j  

V - i G S - ~ ~ h :  + 12 v 3  (1 -V2) VR,X 
x R, A 2  h, + ~ S R :  113 

Set t ing  h = 0 i n  expression (1.225), we  obtain the value f o r  the bending 
moment f o r  the f r e e  r ing  

With the introduct ion of the dimensionless coe f f i c i en t s  , expression (1.225) /90 
" r  

assumes the following form 
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where the coe f f i c i en t s  kl and k2 may be  determined accord5ng t o  the formulas 
(I. 202). 

W e  may f ind  the  max imum stress of the r ing  from expression (1.186) 

2,25 k2 . 
- -  . a  max aK = a. 

2,25 [3 (1 - v2)]3 k 2  + 12 v 3  (1 - v2) k ,  k ,  + (I. 226) 
+48-)6k; 

where 
12P uo =- 
ah; 

is the stress i n  a f r e e  r ing.  

The relative deformation of t h e  r ing  is  as follows 

2 . 2 5 v  [ 3  (1-Vz)l3Ka 
%,ax = Eo 

2 , 2 5 v f 3 ( 1 - ~ ~ ) ] ~  k 2 + 1 2 v 3 ( 1 - v 2 )  k , k , +  
9 

(I. 227) 

is the  m a x i m u m  relative deformation of the f r e e  r ing.  

I n  addi t ion,  according t o  the  r e l a t ionsh ip  (I.206), w e  may f ind  the m a x i m u m  
stress i n  the  shel l  1 produced by def lect ion.  Subs t i tu t ing  the value of X2 

according t o  formula (1.222) i n  t h i s  re la t ionship ,  w e  obtain 

(I. 228) 

The stress of the shell ,  produced by the normal force ,  may be  obtained from 

expression (1.2081, s e t t i n g  k = hk i n  it .  
Rk 

L e t  us g ive  a numerical computation, taking a l l  of t h e  i n i t i a l  da t a  from 
the previous example. W e  may obta in  the relative r ing  deformation according t o  /91 

83 



formula.(I.227), subs t i t u t ing  the following values of t he  c o e f f i c i e n t s  i n  it: 

E,,, = 0,0012. 

The maximum stress i n  the r ing  equals 

max uK = €,,,e E = 2560 kgfIcm 2 

I n  addition, w e  may determine the stress a t  the danger point  of the s h e l l  1. 
The stress caused by de f l ec t ion  may be determined according t o  formula (1.228) 

The stress produced by the  
mined according t o  formula 

A comparison w i t h  the 

force normal t o  the s h e l l  cross sec t ion  may be deter- 
(I. 208) 

QCOTl = 1000 kgf/cm 2 

r e s u l t  obtained i n  the  preceding example ind ica t e s  
t h a t  the r e l a t i v e  r ing deformation, and consequently the corresponding electric 
s i g n a l  of the s t r a i n  gauge, increases  by approximately a f a c t o r  of 2.5, whereas 
the  max imum stress i n  the s h e l l  increases  only by a f a c t o r  of 1.5. 
t h e . c o e f f i c i e n t  X equals X 
given case i t  acquires a more favorable value X 2 2.9. 

Thus, i f  
4.9 i n  the  case of a square cross sec t ion ,  then i n  t!he 

It may be seen from the computation t h a t  t he  stresses i n  the s h e l l  are 
r a t h e r  high. A s  w i l l  be indicated below, the  stresses may be decreased by 
changing c e r t a i n  geometric dimensions of the e las t ic  element. For example, t he  
parameter X may be se l ec t ed  s o  t h a t  the stress a t  the danger point  of t he  s h e l l  
i s  not excessively high, as compared with the stresses i n  the  ring. 

According t o  expressions (1.226) and (1.228), w e  obtain 

o r  i n  the case v = 0.3 

h = 2,525 1 / K j  (I. 229) 

It follows from the  expression obtained t h a t ,  i n  con t r a s t  t o  the preceding 
example, t he re  are g r e a t e r  p o s s i b i l i t i e s  f o r  increasing the coe f f i c i en t  X here. 
This f a c t  dis t inguishes  an elastic element with a t r i angu la r  p r o f i l e  from the 
element invest igated above. 

L e t  us give a numerical example. We obtain the coe f f i c i en t  X = 1.13 f o r  
an elastic element with the  dimensions 

according t o  formula (1.229). This means t h a t  the maximum stress i n  the s h e l l  

/92 
= 5 cm, % = 2 cm and h = 0.1 cm, 
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f o r  t he  given dimensions exceeds the  r ing  stress by approximately 13%, whereas 
the coe f f i c i en t  i s  h = 3.2 f o r  similar dimensions of the elastic element i n  the 
preceding example. 

I n  conclusion, w e  would l i k e  t o  present an example showing the s e l e c t i o n  
of t h e  geometric dimensions of an e las t ic  element with a 
l a r  cross sec t ion  f o r  the load P = 5000 kgf. 
(1.229) t h a t  i t  is advantageous t o  make t h i s  s e l e c t i o n  so  t h a t  the value of J"k" d i f f e r s  very l i t t l e  from unity.  For example, s e t t i n g  \ = 4 cm, h = 0.3 cm 

and % = 2 cm and s u b s t i t u t i n g  these values i n  the expression (I.229), w e  obtain 

X 2 1.8. Thus, stress i n  the s h e l l  is approximately 80% grea t e r  than the stress 

i n  the ring. 

and k2 = - 20' 
obtain the  following f o r  the load P = 5000 kgf 

sh- 

r ing  having a triangu- 
It i s  apparent from:expression 

1 3 For the given dimensions of the elastic element, k = T ,  kl = 40 

Subst i tut ing these q u a n t i t i e s  i n  formula (1.228) and (1.226), w e  

2 m a x o  - 4700 kgf/cm2 
max cK = 2550 k f Z f / a  

The computational r e s u l t  shows t h a t ,  by employing the  r e l a t ionsh ip  (I.229), 
w e  may select the  geometric dimensions of t he  e las t ic  element i n  such a way t h a t  
t he  m a x i m u m  stress of t he  s h e l l  is  no t  extremely large.  

Thus, t he  stress produced by a s t r a i n  gauge i s  completely adequate. 

5. Toroidal E l a s t i c  Element 

The ex te rna l  form of this element i s  shown i n  Figure 4 .  Due t o  i t s  obvious 
advantages -- s m a l l  height ,  low s e n s i t i v i t y  t o  a t ransverse load component and 
t o  the noncentral  inf luence of t he  ex te rna l  force -- i t  is  used more extensively.  

Extensive l i t e r a t u r e  (Ref. 6 ,  7 ,  10, 17, 20, 23, 29) has been devoted t o  
designing t o r o i d a l  s h e l l s .  
d i f f e r e n t i a l  equations with va r i ab le  coe f f i c i en t s  -- i .e.,  i t  i s  extremely cum- 
bersome. Due t o  the f a c t  t h a t  i t  i s  necessary t o  know only the  stress i n  order 
t o  determine the electric s i g n a l ,  t he  v a r i a t i o n a l  methods which are widely em- 
ployed y i e l d  s u f f i c i e n t  accuracy. 

The ca l cu la t ion  is  reduced t o  solving a system of 

L e t  us obtain the b a s i c  formulas by the Ritz-Timoshenko method. A s  is 
known, this method produces a f a i r l y  accurate expression f o r  the displacements, 
and a much less accurate expression f o r  t h e  angles of r o t a t i o n  and f o r  s t r e s s e s .  
However, as w i l l  be seen below, s t r a i n  gauges are wound on s o  t h a t  they measure 
the stresses which depend on the displacements, and not  on the  der ivat ives  of 
the displacements, so t h a t  the use of t he  Ritz-Timoshenko method is v a l i d  i n  
t h i s  case. 

/93 

L e t  an e las t ic  element, having the  form of a torus-like s h e l l ,  b e  compressed 
by the  force P between two p l a t e s ,  which w e  s h a l l  assume are absolutely r ig id .  
Figure 49 shows a,diagram f o r  the e las t ic  element deformation. 
symmetry, i t  is  s u f f i c i e n t  t o  examine the  po r t ion  of the s h e l l  contained between 

Due t o  the 
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two r a d i a l  cross  sec t ions  separated by 
angle a .  W e  shall take i n t o  account 
both the r a d i a l  displacements i n  the 
d i r e c t i o n  of the radius p of the  
middle l i n e  poinits of =the torus  trans- 
verse cross sec t ion ,  as w e l l  as the 
displacement of the - t ransverse cross 
sec t ion  of a s o l i d  disk i n  the direc- 
t i o n  r. W e  may use the following 
l a w  f o r  r a d i a l  displacements v i n  
the  d i r ec t ion  of the radius p :  

v = alcos2y, 

and the  determination of the angle 
$I is  clear from Figure 49. The dis- 
placements caused by deformation of 
the  t ransverse cross sec t ion  may be 
expressed by the dependence 

u, = a, cos 250 cos y. 
Figure 49. Computational Diagram of 
a Toroidal E l a s t i c  Element. 

L e t  us determine the deforma- 
of a c i r c u l a r  f i b e r  having t i o n  E a 

the radius  r, produced by the displacement u i n  the  d i r ec t ion  r 

u = a, cos2y cosy + a2, 
where a 2 
as a s o l i d  body. 

i s  the displacement of t h e  t ransverse cross  sec t ion  of a t o r o i d a l  s h e l l  

J u s t  as is customarily done, making a geometric analysis  on the b a s i s  of /94 
the diagram shown i n  Figure 4 9 ,  we ob ta in  

( I .  230) 

where r is the radius  of t he  axial l i n e  passing through the centers  of gravi ty  

of the t o r o i d a l  s h e l l  t ransverse cross sec t ions ;  p -- mean radius of t he  trans- 
verse cross sect ion.  

0 

I n  order t o  determine the  relative deformation E caused by de f l ec t ion  of 
9 

t he  t ransverse cross sec t ion ,  w e  s h a l l  assume t h a t  the r ing formed by two i n f i n i t e -  
l y  c lose  cross sec t ions  is a beam having s m a l l  curvature. Therefore, w e  have 

E = xz, (I. 231) 

where K i s  the  change i n  the  curvature 

(1.232) 
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where z i s  the running coordinate, which changes over t he  thickness of t he . to ro ida1  
h h s h e l l  between - - 2 z 2 7 (h -- s h e l l  thickness).  

On the  b a s i s  of formulas (1.230), (1.231) and (1.232) ,we obtain 

(I. 233) 

According t o  the Ritz-Temoshenko method, t he  coe f f i c i en t s  a and a must be 1 2 
determined from the condition of the t o t a l  p o t e n t i a l  energy of the system being 
a t  a minimum. The expression f o r  t h e  t o t a l  p o t e n t i a l  energy has the following 
f o m  

(I. 234) 

In t eg ra t ion  is extended over the e n t i r e  region occupied by the material 
from which the elastic element is made. Subst i tut ing expressions (1.230) and 
(I. 233) i n  formula (1.234), w e  obtain 

+- h 
2 n 2 a  2 

E I1 =- 
2(1 -9) 

0 0 - k  
2 

a;  cos 2rp cos rp + a2 +6v - -  . -  cos 

ro + P cosy P2 P' 
-t p cos $7) (p + 2 )  d$7dzdcr - ?Pa,. 

The conditions f o r  the minumum of the quant i ty  II are as follows: 

a rr 
- = 0. 
daa 

Thus, w e  obtain a system of two equations f o r  determining the coe f f i c i en t s  

2 al and a 

where 

p = P .  
ro ' 

h 
P 

q = - .  h 
ro 

E = - - .  

(I. 235) 

When the i n t e g r a l s  w e r e  calculated,  the following expansion w a s  performed 
1 

=1 1 -p cosy + p2cos?y - prCOS"c? + p 4 c o ~ 4 ~  - . . ., 
1 +PCOSCp 
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and the  f i r s t  f i v e  terms w e r e  taken i n t o  account. 
f o r  a t o r o i d a l  s h e l l  whose t ransverse cross sec t ions  have very g rea t  curvature. 

T h i s  provides a high accuracy 

Solving the system of equations (1.235) with respect  t o  al and a w e  ob- 2 '  
t a i n  

(I. 236) 

A s  would be expected, t h e  quant i ty  a2 is s i g n i f i c a n t l y  less than t h e  quanti- 
,,.. 1 I f ,  f o r  example, we  set 1-1 = - w e  then obtain a2 2 0.05'al. 5,  

+ 0 0 ,  1-1 + 0 and keeping the f a c t  i n  mind t h a t  
t y  al. 
l imi t ing  t r a n s i t i o n  r 

Making the 

P = q2?rr,, 

where q i s  the load 
d i s t r i b u t e d  over a c i r c l e  having the radius ro, w e  obtain the approximate value 

i n  the  diameter change f o r  a r ing  with a thickness equaling unity 

per  u n i t  length,  i f  w e  assume t h a t  the force P i s  uniformly 

4P3 A 20, == 0,142 - 
1313 

12 

The exact so lu t ion  has the  following form [see formula (1.67)] 

i .e.,  the e r r o r  is approximately 5%. 

Customarily, s t r a i n  gauges are glued on s o  that they measure the deformation 
E , ,which has the following form on the b a s i s  of expressions (1.230) and (1.236) 
c1 

Ea = 

The a t t a v t .  i s  made t o  glue on the s t r a i n  gauges i n  the zone of maximum 
+ p; + = 0 and f o r  r = ro - p ;  I$ = T. values of 

case,  we have 

f o r  r = r I n  the f i r s t  0 

/96 

(I. 237) 

and i n  the second case w e  have 
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E, = (I. 238) 

For r a t h e r  s m a l l  values of 1-1 = $j, $ and s m a l l e r )  w e  may replace the ex- 
0 r 

preysions obtained, with an accuracy which is s u f f i c i e n t  f o r  p rac t i ce ,  by the  
following expressions 

(I. 239) 

Knowing the permissible value of [ E ] ,  se l ec t ed  from the condition t h a t  the 
s i g n a l  has s u f f i c i e n t  magnitude, on the  bas i s  of expressions (1.237) and (1.2381, 
or  formulas ( I .  239), w e  may determine a l l  the b a s i c  s t r u c t u r a l  dimensions of 
a t o r o i d a l  e l a s t i c  element. 

6 .  Elast ic  Elements f o r  Measuring S m a l l  Loads. 

The fundamental d i f f i c u l t y  encountered i n  measurements of s m a l l  loads (on 
t h e  order of 0.5 - 50 kgf) is  t o  obtain a high enough electric s i g n a l  i n  t h e  
primary device. 

The e l a s t i c  elements which are customarily employed, with s t r a i n  gauges 
which are glued on o r  wound on, are not  s u i t a b l e  here ,  s ince  the  relative defor- 
mations i n  this case are i n s i g n i f i c a n t  and the s i g n a l  i s  consequently s m a l l .  An 
increase i n  the  deformations i n  e las t ic  elements either leads t o  f l e x i b l e  e las t ic  
systems, which consequently have g rea t  nonl inear i ty ,  o r  the s t r u c t u r a l  dimensions 
are s o  s m a l l  t h a t  i t  i s  impossible t o  mount them and d i f f i c u l t  t o  use them. 

/97 

I n  order t o  measure s m a l l  loads,  e l a s t i c  elements with a s p e c i a l  form are 
used, having a s p e c i a l  device f o r  obtaining s i g n i f i c a n t  deformations (Ref. 27). 

L e t  us examine an e las t ic  element representing a r i g i d  r ing  with a mem- 
brane (Figure 50). I n  order t o  increase the e l a s t i c i t y  i n  the membrane, r a d i a l  
grooves are used. On both s ides  of t he  e las t ic  beams-strips, t he re  are r i g i d  
columns, on which pre-stressed s t r a i n  gauges are glued, which are connected i n  
a c i r c u i t  of the Wheatstone bridge type. The beams may have e i t h e r  a constant 
o r  a va r i ab le  cross sect ion.  Two of the most important cases encountered i n  
p rac t i ce  are given below: a beam having a constant cross sec t ion  and a beam with 
so-called e las t ic  j o i n t s .  

The e s s e n t i a l  f ea tu re  of t h i s  type of e las t ic  elements is  found i n  the 
f a c t  t h a t  the s t r a i n  gauge i s  a supporting s t r u c t u r a l  element. Therefore, i n  
t he  calculat ions,  i t  is  impossible t o  disregard the inf luence of the s t r a i n  
gauge on the operation of t he  e las t ic  element, i n  con t r a s t  t o  the cases s tudied 
i n  Sections 3 and 4 of t h i s  chapter. 
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Figure 50. Elastic Element f o r  Measuring Small Loads. 

Under the inf luence of a load which is  perpendicular t o  the  plane formed 
by the  beams-strips, the r i g i d  columns are ro t a t ed  by a c e r t a i n  angle. 
apparent t h a t  the deformation of a wire-wound r e s i s t o r ,  and consequently the 
magnitude of the electric s igna l ,  depends on the  height  of t he  columns. 
fore ,  t he  height  of the columns i s  se l ec t ed  i n  t h e  designs so t h a t  the sensi-  
t i v i t y  of the device lies within the  r e q u i s i t e  l i m i t s  f o r  operat ional  use. 

/98 
It is  

There- 

W e  may ca l cu la t e  an elastic element of t h i s  type by the method of forces,  
assuming t h a t  t he  r e q u i s i t e  value of 
w i r e s  of the s t r a i n  gauge are elongated; t h i s  value corresponds t o  the l imi t ing  
load of an elastic element and provides t h e  given e l e c t r i c  s igna l .  
necessary t o  obtain expressions which i n t e r r e l a t e  the s t r u c t u r a l  dimensions of 
the elastic element and the ex te rna l  load. When the  number of beams-strips 
i s  even, the c i r c u i t  i s  symmetrical, and i t  is s u f f i c i e n t  t o  examine the  con- 
current  operation of two beams-strips 
belonging t o  t h i s  beam equals 

the normal stress [ o ]  is known when the  

It i s  

lying along one diameter l i n e .  The load 

2P 
Q=k, 

where P is  the  measureable force,  and k is the  nunber of beams-strips. 

I f  k i s  odd, i t  i s  possible  t o  supplement each beam with a second f i c t i t i o u s  
beam-strip, i n  order t o  produce symmetry. The load i n  t h i s  case w i l l  a l s o  equal 

2P 
k 

Q=-. 

L e t  us examine the case when the beams have a constant cross sec t ion  
(Figure 50). 
a r i g i d  sec t ion  and which are b u i l t  i n  along the edges. We s h a l l  assume t h a t  
t he  c e n t r a l  r i ng  is  absolutely r i g i d .  
l e n t  diagrams corresponding t o  an elastic element' with the assumed tolerance.  

L e t  us d i s t ingu i sh  between two beams which are interconnected with 

Figure51 shows computational and equiva- /99 
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Figure 51. 
Beam-Strip Having Constant Cross Section. 

Computational and Equivalent Diagram of a 

The system of canonical equations of t he  method of forces  has the following 
f o m  

L l Y ,  + ~ I ~ . X Z + A ~ Q  = 0; 
L * ~ Y I + ~ & ,  + A*Q + 22 = 0, 

where 6 i s  the column displacement a t  the point where the force X2 
i s  applied i n  the d i r ec t ion  of i t s  act ion;  

and A -- displacements due t o  uni t  and ex te rna l  loads, respect ively 
(i -- index of the force f a c t o r  whose u n i t  equivalent pro- 
duces the given displacement; j -- index of the force f a c t o r  
i n  whose d i r ec t ion  the given displacement i s  found) ; 

iQ & i j  

X1 and X2 -- unknown force f ac to r s .  

W e  employ the  unknown force X2 

t o  designate the wire pressure on a 
r i g i d  column, equaling the sum of 
the  project ions of the forces  P 

which elongate t h e  w i r e ,  on an ax i s  
which is  p a r a l l e l  t o  t he  beam longi- 
t ud ina l  axis .  

P r y  

I n  order t o  determine 6 ,  le t  us 
i nves t iga t e  a w i r e  frame made of k 
columns and elongated by the forces  
X2 (Figure 52). 

According t o  Hooke’s l a w ,  w e  Figure 52. Force Diagram of a S t r a i n  
Gauge. have 

X J  111 = - - 
El.‘ sin- 

2 
p -  ’ . 
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where F is  t h e  t o t a l  area of t he  w i r e  cross  sect ion:  
adz F = n - - - .  
4 '  

The angle is 

where n is  the number of sets of w i r e s  i n  t h e  columns. 

It may be seen from Figure 52 t h a t  
c1 AI 6=- 
21 ' 

and, consequently , 

e / loo 

(1.240) 

L e t  us express the unknown force X2 by means of the given permissible stress 

[Dl which determines the  r e q u i s i t e  magnitude of t he  electric s i g n a l  

Xz = [a] F. 
Expression (1.240) may be r ewr i t t en  i n  t h e  following form 

8 = rac1 

x 
2E sin - 

k 

(1.241) 

The system of canonical equations assumes the following form 

I n  order t o  

i j  
c o e f f i c i e n t s  6 

53) according t o  

(I. 242) 
% I ~ I  + 81zxz + A ~ Q  = 0; 

' z .1~1  f 6zzxz f AzQ f [a] c1 = 0. 
x 

E sin - 
k 

so lve  the system (1.242), w e  must determine t h e  values of the 
and AiQ. 

the A. N. Vereshchagin l aw,  we  obtain 

Multiplying by the values shown on the  curves (Figure 

1 - Y Z  QcZ A ---.__ iQ - 
EJi  2 ' 

1 - v z  8 - 1 - v z  
ICI - 2 (R  - c) J e, 11 - - 2c, 61,=8,1= - 

EJ1 E 4  
1 - 9 .  

[TI - 2 (R  - c)] ez. QZ2 = - 
EJl 

The width of the beam-strip is considerably g r e a t e r  than the thickness h. 
Consequently, w e  may assume with a f a i r  degree of accuracy that plane deforma- 
t i o n  occurs. Therefore, i n  t h e  formulas given above f o r  displacements due t o  
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I 

i s  assumed as r i g i d i t y  i n  the  case of def lect ion,  u n i t  loads the quant i ty  7 
1-v 

where J1 is the moment of i n e r t i a  a t  the  beam-strip. 

EJ1 

Subst i tut ing the expressions obtained 6 and A i n  equation (1.242), w e  
obtain ij iQ 

1 -v '  1 - v =  1 - v '  Qc' 

1 - v 2  1 - Y' 

2cx, + -~ [c, - 2 ( R  - c)]  ex, - __ .-.- = 0; 

[cl - 2 ( R  - c)] e.--, 4- ~~ __ [c, - 2 ( R  - c)] e2X2 - 
EJ1 EJ1 2 E J1 

E J1 EJl (1.242')/101 

-. '---v'' -- Qe [.2- (R-%\'] + [a] c1 = 0, 
EJ1 2 K 

2 ' '  ' Esin-  
k 

W e  obtain the following from 
the  f i r s t  equation of the system 
(I. 242) 

1 - 2 ( R  - 41 xz. X , = - - - - [ C  Qc e 
4 2c 

Since 

.Yz = [a] F = [ o ]  - nnd2 (I. 243) 
4 '  

w e  then have 

Excluding the unknown X from 1 
the second equation of the system 
(I. 242'1, by means of formula 
(I.244), and employing expression 
(I. 243), w e  obtain the dependence 
between the  fundamental geometric 
dimensions of an e las t ic  element 

makes i t  possible  t o  construct an 
e las t ic  element which provides t h e  
given stress [a] i n  a s t r a i n  gauge 

and the load. This dependence - / lo2 

Figure 53. Curves of the Bending Moments. f o r  a maximum load, and consequent- 
l y  t h e  electric s i g n a l  of t he  re- 
q u i s i t e  magnitude. 

Customarily, t he  given r e l a t ionsh ip  is  used t o  determine the thickness of 
the elastic element h, and the  remaining dimensions are provided based on s t ruc-  
t u r a l  considerations.  The expression f o r  J1will have the following form 
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3 
Since J1 = - f o r  a rectangular  cross  sec t ion ,  w e  then have 

Figure 54. Diagram of Bending 
Moments Due t o  Unit Force. 

It is  frequent ly  assumed t h a t  k = 4 ,  
i .e. ,  t he  e las t ic  element is given i n  
the  form of two mutually perpendicular 
beams. 

L e t  us give a numerical example. 
For an e las t ic  element having k = 4, 
a = 1 cm,  e = 1 cm, R = 2.7 cm, c = 

= 2.7 cm,  c = 2.25 cm, Q = 1 kgf,  
n = 4 ,  d = 0.002 cm, [ o ]  = 2000 kgf/cm2, 
v = 0 . 3 ,  w e  may determine the quant i ty  h. 
According t o  the formula (I. 245), t he  
thickness of the elastic beam-strip 
equals  h = 0.094 cm. 

1 

I n  conclusion, l e t  us ca lcu la t e  t he  m a x i m u m  values of t he  de f l ec t ion  and 
stress. For this purpose, w e  s h a l l  compile the  curve of the moments due t o  
the  u n i t  force  (Figure 54),  and multiplying the curve of t he  moments due t o  
Q,  X1 and X2 by i t ,  w e  obtain t h e  def lec t ion  a t  t he  poin t  a t  which the  u n i t  

force  is  applied 

the' 

and 

For the numerical example under considerat ion,  the def lec t ion  is  

:.= 3,32 . CU. 

W e  may r ead i ly  ca l cu la t e  t he  stress. The m a x i m u m  bending moment due t o  
force  Q equals 

Ill,,,,, ;-.1 -Qc. 
2 '  

the t o t a l  bending moment may be  determined by the  formula 

The stresses caused by t h e  def lec t ion  are 

/lo3 
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2 
For our example, cs = 393 kgf/cm . 
Frequently, e las t ic  beams-strips have a va r i ab le  cross  sect ion.  Without 

discussing the general  case, l e t  us inves t iga t e  an elastic element which is 
most f requent ly  used i n  prac t ice .  
beam with elastic j o i n t s .  
as previously (Figure 55). 

It represents  a r i g i d  r ing  w h i c h  supports  a 
W e  s h a l l  set a number of such beains equal  t o  k; j u s t  

Figure 55. 
f o r  Measuring S m a l l  Loads. 

E las t ic  E l e m e n t  w i t h  E la s t i c  J o i n t s  

In the ca lcu la t ion ,  we  assume that only e las t ic  j o i n t s  having the thickness 
h are def lec ted ,  and sec t ions  having the thickness t are absolutely r ig id .  W e  

may show that,  f o r  the r a t i o s  of - corresponding t o  the a c t u a l  construct ion of 

e las t ic  elements, t h i s  assumption -- w h i c h  g rea t ly  s impl i f i e s  t he  ca lcu la t ion  -- 
leads t o  in s ign i f i can t  e r ro r s .  

h 
t 

Figure 56 presents  computational and equivalent  diagrams. The system of 
canonical equations has the same form as previously [ see  formula (1.242)l. 

Multiplying by the values shown on the  curves according t o  the  A. N. Veresh- 

and 'iQ' i j  chagin l a w ,  w e  obtained the values of the coe f f i c i en t s  6 

J u s t  as i n  the preceding case, i t  is  assumed t h a t  plane deformation occurs 
here.  Af te r  subs t i t u t ing  the  coe f f i c i en t s  obtained 6 A and 6 [ j u s t  as pre- 

viously , t he  lat ter is determined by expression (I. 241) 3 i n  t he  system (I. 242) , / l o 4  
w e  obtain 

i j '  i Q  
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1 -v2 I - v 2  1 - v *  

EJl E Ji EJl 
4bX, + - 20eX, - ___ Qb(R--)=O; 

26X1 + e 2bezX, - -- ( 2 R - b -  1 - v 2  1 --it Qbe 
EJ1 EJl EJI 2 .  _ _  

-2) + I . 1 1 L  = 0. 
E Esin-  
k 

U 

(I. 242") 

ennd2 n rfl XI = Q ( R  - f )  - - [.I. 

. M =--[Q(R--r)-  1 -[GI]; enrrd2 
TbT 4 2 
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Figure 58. 
Due t o  Unit Force. 

Diagram of Bending Moments 1105 

Subst i tut ing the numerical values,  
w e  obtain 

= 7,75 . CM- i 
a = 827 kgf /cm 

7. Beam and Frame E la s t i c  
Elements 

Figure 57. Diagrams o f  the  Bending Beam and frame constructions have 
Moments. been widely employed i n  force measuring 

technology, due t o  t h e i r  s impl i c i ty  of 
construction and high metrological 
q u a l i t i e s .  The l imi t ing  values of t he  

loads which they can measure range between 20 - 500 kgf. 
are proportional t o  the load act ing i n  a t ransverse d i r ec t ion  and producing de- 
f l e c t i o n ,  may be customarily measured by s t r a i n  gauges which are glued on t o  
the e l a s t i c  elements. 

The stresses, which 

The construction and form of beam o r  frame elast ic  elements may be very 
d i f f e r e n t ,  due t o  the necessi ty  of arranging them e f f i c i e n t l y ,  operat ional  con- 
d i t i o n s ,  e t c .  

A can t i l eve r  is the simplest  beam e l a s t i c  element. 
constant cross section the  stresses where the s t r a i n  gauge i s  glued on may be 
determined by the formula 

For a beam having a 

where 2, is  the  coordinate of the loca t ion  where t h e  s t r a i n  gauge is  glued 
on, determined from the seal; 

--beam length; 

b and h --width and height ,  respect ively,  of t he  beam transverse cross sect ion.  

Frequently, can t i l eve r s  of equal resistance are employed t o  increase the  /107 
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Figure 59. 
Form of a Plane Frame. 

E la s t i c  Element i n  t h e  

s i g n a l  and i n  order  t h a t  i ts magni- 
tude does no t  depend on the  inaccur- 
ate arrangement of- t he  s t r a i n  gauge. 
I n  t h i s  case, the  stresses are deter- 
mined by the  formula 

6 P1 
boh2 ’ 

0 =:- 

w h e r e  b is  the beam width a t  t h e  

loca t ion  of the seal. 
0 

Another type of e las t ic  element 
w h i c h  d e f l e c t s  is  a plane frame(l)  
(Figure 59). It cons is t s  of e las t ic  

beams 1 and 2 having i d e n t i c a l  length,  which are connected a t  t h e  ends by the  
r i g i d  sec t ions  3 and 4. The r i g i d  sec t ion  3 a t  t h e  same t i m e  secures  the  de- 
vice, and sec t ion  4 has a r i g i d  pro jec t ion  5 which receives t h e  measureable 
force  P. 

The e las t ic  beam 1 is  made i n  the  form of a t h i n  p l a t e  and serves as a 
guide beam. 
t h e  e las t ic  beam 2, on which s t r a i n  gauges 6 are glued on c lose  t o  t h e  cross  
sec t ions  w i t h  the l a r g e s t  bending moments. Due t o  the presence of the  guide 
p l a t e  1, a constant r i g h t  angle i s  maintained between the  axial l i n e  of t h e  
r i g i d  sec t ion  5 and the  d i r ec t ion  of t h e  force  P ac t ing  upon the  elementdur- 
ing deformation. The longi tudina l  forces  and moments, which arise during t h e  
measurement of P ,  uniformly compress and elongate  the  e las t ic  beams 1 and 2,  
which does no t  d i s turb  the equilibrium i n  the  e lectr ic  br idge c i r c u i t .  

Thus, t h e  b a s i c  por t ion  of the measureable load P is received by 

L e t  us employ P and P2 t o  designate the  forces  received by elastic beams. 1 
W e  then have 

PI + P ,  = P. (I. 247) 

The displacements of t h e  beam ends may be  determined by the following 
expressions 

(I. 248) 

3 
bh, 

3 
bh, 

L are the  moments of i n e r t i a  f o r  the  cross  sec t ions  / lo8  and J2 = - w h e r e  J1 = - I 12 
12 

of beams 1 and 2. 

Sa t i s fy ing  the  condition of compat ibi l i ty  f o r  the beam displacements , 

(l)Kraftmesseinrichtung (Force measuring device). Pa ten t  FRG, No. 1052708, 
Class 42k 7/05, February 2, 1961. 
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I 

which ha= the  form v1 = v2, w e  obtain 

Solving equations (1.247) and (1.249), w e  ob ta in  

(I. 249) 

(I. 250) 

(I. 251) 

Expressions (1.250) and (1.251) show t h a t  i n  the case hl -f 0 t he  quan t i t i e s  

P1 -f 0 and P2 -f P. 

hl ,  the less the force P2 di f fers  i n  terms of magnitude from the force P. 

the  r a t i o  - = - 

Thus, the smaller i s  the height of the beam cross section 
For 

hl 1 only about 8% of the  force  i s  received by the  e las t ic  beam 1. h2 3’ 

I n  designing f o r  s t r eng th ,  t he  f a c t  must be  kept  i n  mind t h a t  the maximum 
stresses w i l l  be  as  follows i n  t h e  beam 2 

(I. 252) 

L e t  us compare the element under considerat ion w i t h  an e las t ic  element i n  
the form of a cant i lever .  Natural ly ,  they must be compared under the  condition 
that they have i d e n t i c a l  ex te rna l  dimensions ( i n  t h i s  case, equal  length) and 
equal  maximum stresses providing f o r  an i d e n t i c a l  e lec t r ic  s igna l .  For a cant i -  
lever, t h e  maximum stress i s  determined by the  formula 

and the m a x i m u m  def lec t ion  is  determined by the  following expression 
~ ~ 1 3  

v,,,,, = --- ’ 3 E J ,  

(I. 253) 

(I. 254) 

where 

T h e  corresponding values f o r  the frame system may be  determined by the  
formulas (I. 248) and (I. 252). W e  have t h e  following from the  equation f o r  t he  
expressions (I. 252) and (I. 253) 1109 

12; 

hi 
__-  - 2. 

Taking this re la t ionship  i n t o  account, w e  f i nd  the following from formulas 
(1.248) and (1.254) 
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<.e., a frame eZastic eZement is approximateZy 40% more rigid than a cantiZeuer. 

A subsequent va r i e ty  of beam elast ic  elements i s  a three-dimensional frame. 
Elastic elements of t h i s  type are used, f o r  example, i n  c e r t a i n  modern types of 
batchers  which are used f o r  t h e  continuous weighing of f r i a b l e  materials (Ref. 5). 

A s  may be  seen from Figure 60, t he  working sec t ion  of this e las t ic  element, 
upon which the  tensometric transducers are glued, 
beams having a va r i ab le  cross  sec t ion ,  connected with a r i g i d  center.  The beams 
must be  close t o  the  beams having equal  r e s i s t ance ,  so  t h a t  inaccurate  i n s t a l l a -  
t i o n  of the s t r a i n  gauge does n o t  in f luence  t h e  magnitude of t he  e lec t r ic  s i g n a l  
en ter ing  the secondary apparatus. 

is  made i n  the  form of t h ree  

These beams are supported by th ree  
columns which are much less r i g i d  when 
def lec ted  than the  working beams, and 
i n  essence represent  e las t ic  supporting 
j o i n t s  . 

Thus, t h i s  type of e las t ic  element 
represents  a s t a t i c a l l y  indeterminant 
three-dimensional frame having a varia- 
b l e  cross  sec t ion .  

I f  the condition of symmetry is 
employed, the computational diagram of 
the e las t ic  element may be represented 

S t a t i c a l l y  loaded by the  force  P1 = 7. 
separa t ing  the  indeterminant system 
and replacing the  e f f e c t  of t he  removed 

Figure 60. E la s t i c  Element i n  the  i n  the  form of a frame (Figure 61) 
Form of a Three-Dimensional Frame. 

s ec t ions  by the  unknown moment X and t h e  force  Q, w e  arrive a t  the equivalent  
system. 

By studying the p r inc ip l e  Underlying the  ac t ion  of the  e las t ic  element, w e  
may see t h a t  t he  force  Q and the  moment X must be  such t h a t  the  hor izonta l  dis-  
placement of t he  poin t  b of t he  vertical  s tand  equals zero. 
due t o  the  s t r i c t  vertical  displacement of the poin t  c of the  e las t ic  element 
during the  loading process.  

This condition is  /110 

The second condition s t i p u l a t e s  t h a t  t he  angles of r o t a t i o n  f o r  both beams 
a t  the  poin t  b be equal  i n  magnitude, and have opposite s igns.  

The equation f o r  an e las t ic  l i n e  of a hor izonta l  beam is as follows: 

( I .  255) EEJ, (.q v; == - P, (II - x) -1- x. 
The equation f o r  t he  e l a s t i c  l i n e  of a v e r t i c a l  s tand  is  
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Figure 62. Horizontal  Beam Having 
Variable Cross Section. 

Figure 61. Computational and Equiva- 
l e n t  Diagram. E J ~ v ~  == - Q ( I ,  -.x) + X. ( I .  256) 

I n  both cases,  the determination 
i s  made from the clamped end. 

The conditions formulated above f o r  the operation of an e l a s t i c  element 
of t h i s  type (condition of deformation compatibil i ty) may be wr i t t en  as 
follows 

} 
v ;  (21) = - v; ( f J ;  
up (I,) = 0. (I. 257) 

Figure 62 shows a ho r i zon ta l  beam having a va r i ab le  cross sect ion,  which 
customarily has a constant thickness h and a width which changes l i nea r ly .  
may be r ead i ly  determined t h a t  the width of the beam b changes according t o  the 
following l a w  

It 

x ,  b = b 0 . - % L - X  
11 

and the moment of i n e r t i a  changes according t o  the l a w  

L e t  us represent J (x) i n  t he  form 1 

J ,  (x) = AX + B,  
w h e r e  

Integrat ing equation (I. 255) twice, w e  obtain 

-/ 111 

(I. 258) 

(1.259) 
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Employing the following boundary conditions: i n  the case of x = 0 t h e  dis-  
placements v f l  = v = 0 -- we f ind  the in t eg ra t ion  constants C 1 1 and C2: 

I 
B 

A2E 
c2= --(InB- 

In t eg ra t ing  equation (1.256) , we obtain (J2 = const.): 

(I. 260) 

(I. 261) 

I n  order t o  s a t i s f y  the f i r s t  condition (1.257), w e  equate (with t h e  oppo- 
s i te  sign) expressions (1.258) and (1.2611, respect ively,  i n  t he  case x = 

and x = 2, 

from which we  have 

(I. 262) 

The f a c t  t h a t  t he  second condition (1.257) is  s a t i s f i e d  makes i t  possible  
t o  express Q i n  terms of X: 

from which w e  have 

Subs t i t u t ion  of 

(I. 263) 

the expression (1.263) i n  formula (1.262) y i e l d s  /112 

(1.264) 

L e t  us introduce add2tional conditions. The f i r s t  condition - equal 
stresses a t  the  points  b and c - may be w r i t t e n  i n  the  following form 

__- M (0) - M (4) ( I .  265) 
\v (0) w (I,) ' 

where M(O) ,  W ( 0 )  , M(ll) , W(ll) are the  bending moments and r e s i s t ance  moments, 
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respect ively,  a t  the points  with the  coordinates 0 and 11- 

Expanding equation (I. 265), w e  obtain 

(1.266) 

Since the  s t r a i n  gauges are glued on close t o , t h e  seal, t he  second condi- 
t i o n  - obtaining a maximum electric s i g n a l  - may b e  formulated as follows 

or ,  i n  other  words, 

6X 
b,h2 ’ [a] = - 

from which w e  have 

X=-. bih2 [.I (I. 267) 
6 

Equating the  r i g h t  hand s ides  of equations (1.264) and (1.267) , w e  obtain 
the dependence of the geometric dimensions on the  load P1: 

(I. 268) 

where 

bi 

6 0  
in = -. 

Formulas (1.268) and (1.266) make i t  possible  t o  determine one of the 
parameters of t he  e las t ic  element under consideration, i f  t he  remaining para- 
m e t e r s  are given (as a r u l e ,  these parameters are spec i f i ed  from s t r u c t u r a l  
considerations).  
width, on which t h e  s t r a i n  gauges are located,  is  the decis ive parameter. 

Most frequently,  the thickness h of a beam having va r i ab le  

By way of a numerical example, we s h a l l  determine the  thickness of an /113 
50 kgf;  bl = 0.8 cm; b = 2cm; P1 = - 3 

= 2.5 cm; J = 0.8-10 cm ; [ a ]  = 2000 kgf/cm . 
0 elast ic  element with the  following data: 

-4 4 2 
2 

Condition ( I .  266) y i e lds  

W e  obtain the following from (1.268) 

h = 0,279 cad. 
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I n  a similar way, we  may determine the  paramaters z and J2, f o r  example. 2 
It i s  sometimes necessary t o  l i m i t  ourselves t o  the  de f l ec t ion  -of t he  e l a s t i c  
element where the  ex te rna l  load i s  applied. W e  m u s t  then add a l i m i t a t i o n  on 
the  de f l ec t ion  a t  the  given point  t o  the ex i s t ing  conditions,  employing ex- 
pressions (I. 259) and (I. 260). 

I n  p r inc ip l e ,  t h i s  is calculated i n  the  same way, although the numerical 
computations are somewhat complicated. 

CHAPTER I1 /114 

THEORETICAL DETERMINATION OF ELASTIC ELEMENT NONLINEARITY 

1. Elements of t h e  Chebyshev Approximation- o f  . .  Fugctions 

W e  s h a l l  present c e r t a i n  information derived from the theory of the b e s t  
approximation of functions by means of the polynomials developed by P. L. Chebyshev. 
The art%cle (Ref. 1.)  has discussed the  Chebyshev method i n  a form which is  s u i t -  
ab l e  f o r  engineering appl icat ions.  

L e t  us assume t h a t  w e  have a system of functions + (x) ,  +2(x) ,  ...,+ + (x). 1 n l  
W e  s h a l l  assume t h a t  these functions are 
d i f f e r e n t i a b l e  i n  the i n t e r v a l  i n  which the independent va r i ab le  changes 

l i n e a r l y  independent, and continuously 

XI < X < &+l. 

L e t  us compile the  following polynomial from the given functions 

P (XI == J ~ ? I  ( X I  f Pay2 ( X )  + . . . + p , , ~ , ~  (x) .  
I f  t h i s  polynomial has no more than n roo t s  i n  t he  (x . x 3 i n t e rva l ,  1' n+l 

t h i s  means t h a t  the functions +l(x), +,(x) .**- .  +,+,(x) form a Chebyshev system. 
L e t  us formulate the  following problem of the b e s t  approximation: ... s o  t h a t  t he  polynomial P (x) de- determine the coe f f i c i en t s  pl. p2. 

v i a t e s  t o  the least extent  from the  given function f ( x )  i n  the i n t e r v a l  ( a , b 2  
The coe f f i c i en t s  pl, p2. pdl may b e  se l ec t ed  s o  t h a t  t he  g r e a t e s t  diffe-  

rence m of the functions f ( x )  and P(x) i n  the i n t e r v a l  (x 1' x n+l ) is  minimal, 

i .e. ,  

How may w e  

P l - l t l ~  

m = min max If (x) - P (XI I 
P 

X I  < x < &+ 1.  

This problem may be solved by the following fundamentaZ Chebyshev theorem. 
I n  order t h a t  the following polynomial 

P (x) = p L ? i  ( x )  + P2Y.L (.4 -I- * -I- Pa'?,, (.VI 

of the system of Chebyshev functions deviate  the least  from the given continuous 
function f ( x )  i n  the i n t e r v a l  (a,b), i t  is necessary and s u f f i c i e n t  t h a t  the 
difference 
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I: (s) == \ (s) - p (x) 

reaches i t s  l imi t ing  values +m no less than n + 1 t i m e s  w i t h  successively 
a l t e rna t ing  s igns i n  the  i n t e r v a l  (a,b). 

1115 

On the b a s i s  of t h i s  theorem, w e  may w r i t e  a system of functions,  from 
which w e  may determine the  coe f f i c i en t s ,  pl, p 2 , .  . . ,pnr the magnitude of m y  and the 

pointsx 2 y  x 3 , - - - , x n ,  a t  which the function F(x) 

are equal t o  +. 
t o  determine the unknowns, i n  the f i r s t  place w e  have n - 1 equations corresponding 
t o  the extrema1 points  which l i e  within the i n t e r v a l  (a,b) 

reaches its m a x i m a l  values,  which 

A s  may be seen, t he  t o t a l  number of unknowns is 2n. I n  order 

F' (Xi) = 0 (i = 2, 3 , .  . . , n), 
(11. I )  

I n  the second place,  w e  have n+l equations expressing the condition of 
equa l i ty  and the a l t e r n a t i o n  of the s ign  of the l a r g e s t  values of F(x) within 
and a t  the boundaries of the i n t e r v a l  (x 1' xn+l) 

F ' ( x i ) = k m  ( i==l ,2 ,3  ,..., n + l ) .  (11.2) 

Thus, the number of equations corresponds t o  the number of unknowns. The 
values of the coe f f i c i en t s  pl, p 2 , * * * ,  pn, obtained on the b a s i s  of equations 

(11.1 and 11.2) , determine the  polynomial P (x) f o r  which the g r e a t e s t  deviat ion 
of +m from the given function f ( x )  i s  minimal. This means t h a t ,  as compared 
with any other  polynomial compiled from the same functions $,(x) , $,(x) , $,(x), 

which approximate the function f (x)  ( for  example, a polynomial obtained by the 
method of least  squares),  the polynomial which w e  have obtained gives the b e s t  
approximation. 

Very frequently a l l  the functions $l(x), $ , ( x ) , * - * ,  $,(x), from which the 

approximating polynomial i s  compiled, vanish i n  the case x = xl, and x = x 
n+l' 

o r  simultaneously i n  the  case x = x 
polynomial p (x) ,  which represents  t h e i r  l i n e a r  combination, a l s o  vanishes f o r  
the same values of x. For example, i n  t h i s  study the  approximating function 
is  chosen everywhere s o  t h a t  i t  vanishes a t  the o r ig in ,  together with the 
approximabile function. However, i n  t h i s  case the  Chebyshev theorem remains 
i n  force. It i s  only necessary t h a t  the roots  x = x and x = x be taken 

i n t o  account when calculat ing the roots .  

It i s  apparent t h a t  t he  *1' and x = x 1 

1 n+l 

2. . .  Nonlinearity .. Coeff ic ient  of E l a s t i c  Elements 

Chapter I s tudied e las t ic  tensometric elements i n  the l i n e a r  formulation. 
This l ed  t o  a l i n e a r  c h a r a c t e r i s t i c  of t he  load f o r  t h e  coordinates P ,  0. 

Calculations f o r  s t r eng th  and r i g i d i t y  with t h i s  formulation y i e l d  satis- 
factory r e s u l t s ,  s ince  i n  t h i s  case g rea t  accuracy is  not required. Such a 
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formulation is  inadequate when studying the  metrological propert ies  of an elas- 
t i c  element, s ince  the  load c h a r a c t e r i s t i c  of an e las t ic  element is nonlinear. 

The nonl inear i ty  of t he  c h a r a c t e r i s t i c  i s  due t o  imperfect e las t ic  pro- 
p e r t i e s  of the material from which the  elastic element i s  prepared, a change 
i n  the  geometric dimensions under a load, thermal in t e rac t ion ,  and other  causes, 
When an accuracy which does not  exceed a f r a c t i o n  of a percent Is required from 
the  e l a s t i c  elements, t he  l i n e a r  formulation of the 
since the  measurement e r r o r s  which r e s u l t  from the nonlinear c h a r a c t e r i s t i c  of 
the e l a s t i c  element may exceed the l i m i t s  of accuracy. 

/116 

problem is  not  s a t i s f a c t o r y ,  

W e  s h a l l  study the nonl inear i ty  produced only by a change i n  the form of 
the elastic element and by a displacement of t h e  point  where the force i s  applied 
during loading, s ince  t h i s  i s  t he  b a s i c  reason f o r  the nonlinear c h a r a c t e r i s t i c ,  
and a l s o  because i t  is  very d i f f i c u l t  t o  take other  f ac to r s  i n t o  account by an 
a n a l y t i c a l  method. 

Thus, when determining the  nonl inear i ty ,  w e  r e j e c t  the p r inc ip l e  of unchanged 
form i n  the loading process as w e l l  as the  p r i n c i p l e  of the independence of the 
ac t ion  of the forces ,  i.e., w e  do not adhere t o  the assumptions advanced i n  the 
s t r eng th  of materials. 
i s  homogeneous, i s o t r o p i c ,  and s a t i s f i e s  Hooke's Law. 
account the inf luence of displacement, s i n c e  the  nonl inear i ty ,  which arises 
when t h i s  f a c t o r  i s  taken i n t o  account, is  of a higher order of smallness. 

However , w e  assume t h a t  the elas t i c  element material 
W e  s h a l l  no t  take i n t o  

The e r r o r  a r i s i n g  due t o  t h i s  type of nonl inear i ty  i s  a systematic e r r o r  
of the device, and can be determined numerically. -The nonlinear i ty  may be 
determined by d i f f e r e n t  methods. 

Most frequently,  the nonl inear i ty  of a function ( the a n a l y t i c a l  depen- 
dence of stress on the  load w i l l  serve as such a function f o r  us) is determined 
by the f i r s t  nonlinear term of the expansion i n  series. 
approach i s  not  applicable f o r  the following considerations. 
sur ing device, t he  scale of t he  secondary apparatus is l i n e a r ,  and every a t t e m p t  
i s  made t o  keep the g r e a t e s t  e r r o r  a t  a minimum by adjustment. I n  essence, t h i s  
means t h a t  the curve f o r  the dependence of the device readings Q I ~  the  magnitude 
of the load is  b e s t  approximated by a s t r a i g h t  l i n e  passing through the or igin.  

I n  t h i s  case, such an 
I n  a force mea-  

On t h i s  b a s i s ,  as the  nonl inear i ty  w e  s h a l l  employ the l a r g e s t  r e l a t i v e  
e r r o r  i n  the  case of the b e s t  approximation, which w i l l  be ca l l ed  the nm- 
ZinemYity coefficient m from t h i s  po in t  on. Consequently, i f  the dependence 
between the  load and any other  quant i ty  which i s  proportional t o  the readings 
of t he  device -- f o r  example, the stress i n  the elastic element a t  the  place 
where the s t r a i n  gauge is  glued on -- has the following form 

and i f  the l i n e a r  dependence, 

a L- f(0, 
representing the equation of t he  device scale, is  

a = CP, 
R (11.3) 
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0 

Figure 63.  Approximation of t he  Load 
Charac te r i s t i c  by a Linear Function. 

/ 117 where the constant coe f f i c i en t  c is  un- 
known, then the  nonl inear i ty  coe f f i c i en t  
m and the coe f f i c i en t  of proport ional i ty  
c w i l l  be determined from , the following 
conditions 

i n  the  i n t e r v a l  

(11.4) 

where XPm is the  smallest value of the 
load, beginning with which measurements 

-- l imit ing value of t h e -  load. 
- 

'm are permissible;  

This condition denotes the  Chebyshev approximation, although our problem 
has the following c h a r a c t e r i s t i c :  w e  do not  employ the absolute values of the 
divergence of t he  functions,  bu t  r a t h e r  the r e l a t i v e  values. 

The meaning of t he  condition (11.4) may be most simply explained graphically 
(Figure 6 3 ) .  L e t  t he  curve L passing through the o r i g i n  represent the l i n e  of 
the load. W e  s h a l l  draw two l i n e s  OA and OB through the  o r ig in ,  s o  t h a t  each 
of them has not  more than one po in t  i n  common with the  curve L ,  i n  addi t ion t o  
the  i n i t i a l  point.  This po in t  may be e i t h e r  a point  a t  one of the ends of the 
interval(XPm, Pm,)or 

OC of the angle AOB formed by t h i s  method w i l l  be the desired l i n e a r  dependence 
s a t i s f y i n g  condition (11.4).  

a point  of contact within the in t e rva l .  The b i s e c t r i x  

Considerable mathematical d i f f i c u l t i e s  are e n t a i l e d  i n  determining the  
deformation and stress of e l a s t i c  bodies,  with allowance f o r  a change i n  the 
geometric dimensions under a load. This is  due t o  the f a c t  t h a t  the equations 
thus obtained are usually nonlinear,  and i n  the general  case i t  i s  impossible 
t o  f i n d  t h e i r  i n t e g r a l  i n  closed form. 

A s  has already been pointed ou t ,  many researchers have been i n t e r e s t e d  i n  
designing e las t ic  p a r t s .  P a r t i c u l a r  a t t e n t i o n  should be ca l l ed  t o  the work 
of Professor Y e .  P. Popov, whosystematized the  behavior of a l a r g e  class of 
e l a s t i c  f l e x i b l e  systems, with allowance f o r  a change i n  the  geometry under a 
load. However, the method which he advanced i s  not  s u i t a b l e  f o r  analyzing force 
measuring e las t ic  elements, s i n c e  t h i s  method does not  make i t  possible  t o  sepa- 
rate the nonlinear p a r t  of the so lu t ion  from the  l i n e a r  p a r t  i n  general  form. 
This method i s  a l s o  unsuitable due t o  the lack of t ab le s  of e l l i p t i c a l  i n t e g r a l s  
with a s m a l l  s tep.  

In t e rpo la t ion  i n  terms of ex i s t ing  t ab le s  may lead t o  rough e r r o r s  i n  pro- 
blems requir ing high accuracy of t he  solut ion.  Therefore, when the problems 
presented i n  t h i s  chapter are solved, w e  primarily employ the  method of the 
small parameter which is  very e f f i c i e n t  and s u i t a b l e  f o r  an analysis  of elastic 

1118 
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elements. 

W e  should a l s o  note  t h a t  i t  i s  i n s u f f i c i e n t  t o  c l a r i f y  the -na tu re  and m a g n i -  
tude of the e r r o r s  when designing elastic tensometric elements. 
a l s o  be found, i f  t h i s  is  possible ,  f o r  removing these errors.. 

A method m u s t  

3. E l a s t i c  Elongation and Compression Elemenks 

L e t  us determine the  nonl inear i ty  of an e l a s t i c  element, an arrangement of 
The ca l cu la t ion  of the p a r t s  comprising t h i s  ele- which is  shown i n  Figure 64. 

ment w a s  performed above. 
given, and the element is assumed t o  have the form of a beam with a constant 
cross sec t ion ,  s ince  t h i s  w i l l  no t  introduce any changes i n  the subsequent dis-  
cuss i on. 

Details of t he  construction i n  Figure 64 are not  

-VEz 

Figure 64. Tensometric Column, and Two 
Forms of i t s  Cross Section. 

I n  order t o  determine the electric 
s i g n a l  from a s t r a i n  gauge, i t  i s  nec- 
essary t o  know t h e  stress a t  the place 
where i t  is  glued on. I n  t h i s  case, i t  
i s  s u f f i c i e n t  t o  employ the following 
w e l l  known formula 

where Fo is  the  area of the transverse 

cross sec t ion  of the nondeformed rod. 

This formula i s  very accurate,  s i n c e  
the magnitude of the maximum stresses 
a r i s i n g  i n  the e l a s t i c  element does not 
usually exceed 0.3 - 0.5 of the y i e l d  
po in t ,  and consequently w e  may disregard 

the difference between the beginning and f i n a l  values of the t ransverse cross 
sec t ion  area. 

A d i f f e r e n t  s i t u a t i o n  arises during the  t h e o r e t i c a l  i nves t iga t ion  of the 
metrological propert ies  of these e las t ic  elements. The requirements imposed 
on a force measuring device are so  g r e a t  t h a t  w e  must 
of t he  deformation smallness even f o r  very s m a l l  stresses. 

reject the  p r inc ip l e  1119 

Systems of t h i s  type may be regarded as nonlinear only i n  force measuring 

These two types of e las t ic  elements 
devices. Elastic elements representing columns which elongate or  compress have 
a c i r c u l a r  o r  rectangular cross sect ion.  
are calculated below i n  the nonlinear formulation. 

Beam having a square cross section (See Figure 6 4 ,  I). I n  order t o  be spe- 
The z ax i s  is  directed along 

I n  the case of the un iax ia l  stress state,  the generalized Hooke's Law 
c i f i c ,  w e  s h a l l  i nves t iga t e  the case of elongation. 
t he  beam. 
may be wr i t t en  i n  the following form g = o p -  

E '  
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where I, is  the  Poisson coe f f i c i en t .  

The t r u e  stress equals P 
\ F, 

uz=-, 

F is  the t ransverse cross sec t ion  area i n  the deformed state. z 

Since w e  have 

F, =. a2 ( 1 - V E ~ ) ~  a* ( 1  - ZYZ). E 

then 

oz * a* 1 - 2 v  2) = P. 
( E  

P 
a Se t t i ng  -2 = oo, w e  obtain the expression f o r  determining oz 

E 
= 2v  2v 

0, + - oo = 0, E 0 2  -- 

from which w e  have 

(11.5) 

Selecting the  minus s ign  i n  f r o n t  of the root  i n  formula (11.5) and de- 
composing the expression i n  the form of a Newton binomial, w e  obtain 

Due t o  the smallness of the second component of t he  binomial we may confine 
ourselves t o  th ree  expansion terms 

2v  2 
0 = 0 + - o2 L= 1- p + p2. 
2 3 E O  l7.I E (11.6) 

Formula (11.6) makes it possible  t o  take i n t o  account the nonl inear i ty  of /I20 
an elast ic  element having a square cross section. 
nonl inear i ty ,  le t  us examine the curve f o r  the load, 
may approximate the  curve f o r  t he  load uz by the l i n e  u = cP, so t h a t  condition 

(11.4) i s  s a t i s f i e d .  

I n  order t o  determine the 
shown i n  Figure 65. W e  

The meaning of t h i s  condition w a s  c l a r i f i e d  above. 

W e  may represent the r e l a t i v e  e r r o r  n(P) i n  the following form 
2 v  

2v - 
~ ~ = (& - 1) + - P. a -a,, 

q ( P )  = - 
00 CP a4cE 

According t o  the l i n e a r i z a t i o n  condition (11.41, w e  may w r i t e  t he  system Of 
2v 1 - __. LP, = - nt;  

1 + - P, = m, 

1 the  two following equations : -- 
(1% a4cE 

a2c a4cE 
2v 1 __- 
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Solving t h i s  system, we  obtain 
c=-++(1 1 +h)P,n; 

a2 a4E m =  

F 

Disregarding the  second term i n  
the denominator of t he  expression f o r  m y  
w e  may w r i t e  

where 

Thus, the nonZinearity depends 
or29 on the conditiona2 max imal  s tress  

Om' o 

By defining the  permissible (nor- 
mative) value of ;he nonl inear i ty  coef- 
f i c i e n t  [m] , w e  may determine the  l imi t ing  
stress o 

Figure 65. Curve f o r  the Loading 
of a Tensometric Column During 
Elongation. om: 

and, consequently, t he  l imi t ing  load P : m 

E 
va2 (1  - A) P,n = [m] -___ -. 

2 L e t  us give a numerical example. Let us set X = 0.1,  oo = 2000 kgf/cm , 
v = 0.3. The nonl inear i ty  coe f f i c i en t  i s  m 0.027%. 

It is w e l l  known t h a t  the permissible e r r o r  equals 0.05% f o r  a wide class 
of s ca l e s .  A comparison of the nonl inear i ty  coe f f i c i en t ,  obtained i n  t h i s  ex- 
ample, with the permissible e r r o r  of the sca l e s  i nd ica t e s  t h a t  t h i s  type of 
e l a s t i c  element i s  sometimes unsuitable f o r  use i n  very accurate sca l e s ,  due t o  
the f a c t  t h a t  an e r r o r  caused by other  f ac to r s ,  which are not taken i n t o  account 
i n  the calculat ion,  i s  superimposed on the e r r o r  caused by the nonl inear i ty .  

/121 

Beam having a C i r C U Z a r  cross section (See Figure 64, TI). just as i n  the 
preceding case, 
beam. 

i n  order t o  be s p e c i f i c  we s h a l l  examine the elongation of a 

I n  the case of a un iax ia l  s t r e s s  s t a t e ,  w e  have 
a = a  =O. r e  
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The general ized Hooke’s Law has  the  following form 
1 V & =-Y 

E & = - a -  & - - - a *  
I E 2’ e -  E 2’ 

where E E ~ ,  E ~ ,  are t h e  relative deformations i n  the  corresponding d i rec t ions .  
z’ 

Taking i n t o  account 
longi tudina l  axis of the  
ec t ion  r as follows 

t he  symmetry of t he  deformation with respect  t o  the  
beam, w e  may w r i t e  t he  relative deformation i n  the  d i r -  

The real  stress is  
P 

a =-7, 
F 2  

where F i s  the  area of t he  beam t ransverse  cross sec t ion  i n  the  deformed s ta te  
z 

F, = K (r + u)’ = ZP (1 + E,)’. (11.8) 

and dis- V 
Taking the  f a c t  i n t o  account t h a t  E = _  “ O Z ’  s e t t i n g  Go =;2, 

E 
regarding the  square of t h e  s m a l l  quan t i t i e s  i n  the  expression (11.8) , w e  ob- 
t a i n  an equation which i s  s i m i l a r  t o  expression (11.6) 

r 

Therefore, j u s t  as i n  the  case of a beam with a square cross sec t ion  
[See Formulas (11.7)],  w e  ob ta in  

111 -= 2- (1 - ).) ao,,L, 
E 

where 

4 .  Elas t ic  Elements of t he  Cant i lever  Type 1122 

E l a s t i c  elements represent ing a cant i lever  loaded by a force  a t  t he  end 
are frequent ly  employed f o r  measuring s m a l l  and medium (up t o  500 kgf) loads. 
The customary assumptions advanced when solving t h i s  problem s ta te  t h a t  an 
approximate expression f o r  t h e  curvature  i s  employed 
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and a l s o  the displacement of t he  po in t  of appl icat ion of t he  force i s  not taken 
i n t o  account. 

‘ I  dv 
dx 

I- - Xg - 
Figure 6 6 .  
ment of the Cantilever Type. 

Diagram of an Elast ic  E l e -  

The values of the q u a n t i t i e s  con- 
tained i n  the  equation obtained may be 
seen from Figure 6 6 .  

I n  order t o  take the non l inea r i ty  

L e t  
i n t o  account, w e  must comg5le a prec i se  
equation f o r  t he  beam elastic l i n e .  
us study a beam haking a constant cross 
sect ion.  

W e  s h a l l  assume t h a t  the ex te rna l  
load does not elongate the e l a s t i c  ele- 
ment f i b e r s  along the n e u t r a l  l i n e .  The 
equation of the elastic l i n e  may then be 
w r i t t e n  i n  the  following form 

It i s  sometimes advantageous t o  
change from the argument z i n  expression (11.9) t o  the  length of the arc s. 
For t h i s  purpose, l e t  us inves t iga t e  the d i f f e r e n t i a l  of t he  arc of t he  beam 
n e u t r a l  l i n e .  

The curvature may be w r i t t e n  i n  the following form 

It may be r ead i ly  seen t h a t  

- _  - sincq, 
ds 

from which w e  have 

du p = arc sin- 
ds and 

d2v 

3- = L ( a r c s i n l r )  dv = ds2 

ds ds 

Thus, t he  equation f o r  the e l a s t i c  l i n e  acquires the following form 
d?Q - 

M 
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With allowance f o r  t he  displacement of the force point  of appl icat ion,  t he  
moment w i l l  have the following value 

L e t  us determine the  quant i ty  xb - X. The d i f f e r e n t i a l  af t h i s  quant i ty  

equals 

dscos y = d s i  1 - (x) dv 2 . 

Performing in t eg ra t ion  from s t o  R ,  we obtain 

1- 

X b  - x = 1 1/1- ($)%s. 
S 

(11.11) 

The f i n a l  form of the equation f o r  t h e  elastic l i n e  i s  as follows: 

(11.12) 

L e t  us expand[l -(zl- 1 / 2  and [I -(&f] ds 1 / 2  i n  the  form of the Newton 

binomial, and l e t  us perform s u b s t i t u t i o n  i n  the  i n i t i a l  equation (11.12): 
I 

v”[l  ++(  d ) z + + ( u ’ ) 4  . . . I  =%J[l - (V’)2-  1 

-1- - (u’)4 - . . .] ds. 

S 

1 
8 

(11.12’ ) 

T h e  so lu t ion  of equation (111.12’) may be w r i t t e n  i n  the form of a series /124 

ZJ = pvo + p2u, + p%Jz + . . . , 
P where u = - EJ’ 

Subst i tut ing t h i s  series i n  equation (11.12’) w e  obtain 
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We shall confine ourselves t o  terms with 1-1 i n  t he  fourth power 

1 1 + 11"; - v i  . v; = p ds - - 1 py! (vJ2ds - p4 fv&i -ds. 
2 

S S s 

Equating the terms f o r  i d e n t i c a l  powers of 1.1, w e  obtain 

(11.13) 

Since v1 = 0, w e  obtain v = 0 from the fourth equation. 3 

Solving the  f i r s t  equation (11.13) with respect  t o v  and then t h e  t h i r d  0' 
equation with respect  t o  v we  f ind  the  desired solut ion.  2' 

Integrat ing the f i r s t  equation , w e  obtain 

SZ 

2 
v; =_1 Is-- -/- c; 

lS2  s3 

2 G  
v0 = .- - - + CS + D. 

For the ex i s t ing  boundary conditions s = 0, v = 0-, v; = 0,  the so lu t ion  0 
assumes the following f orm 

S Se t t ing  7 = 5 ,  w e  obtain 

L e t  us rewrite the t h i r d  equation (11.13) with allowance f o r  the value 
1 

12 s z - 2 s 3 + 2 )  - ' s ( l z -  2s +E) ds. 
4 2 4 

0 
found f o r  v 

s 
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L e t  us replace the i n t e g r a l  and perform some simplif icat ions 

Performing in t eg ra t ion  and t ak ing - in to  account the zero boundary conditions,  
w e  obtain 

+----- 
212 a 13 4 ~4 a is s6 1. ’ v2=--s15(1+---- , I  5sa 3 5 9  9 s4 

15 

W e  then have S J u s t  as previously,  l e t  us set 5 = 7. 

28 

Thus, w e  obtain the  so lu t ion  of the i n i t i a l  equation (11.12) 

p l s  2 I - - < - - -  I ( 3 ) ( E 4 3  30 (11.14) 

I n  the case s = (6  = l ) ,  the  de f l ec t ion  comprises 

pi3 4P3L7 
V L 3 = - - - -  - 3EJ 105 (E43  - (11.15) 

I n  formula (11.153, the f i r s t  term i s  the known l i n e a r  expression, 
and the  second term represents  a s m a l l  nonlinear deviat ion from it. 

L e t  us divide the l e f t  and r i g h t  s i d e  of the formula obtained (11.15) by 2. 
Se t t ing  

vo PI? -=- 
3EJ ’ 

w e  obtain 

u~ u 36 0 3 - = A _ -  
I 1 35 (+) - 
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w e  f ind  t h e  relative e r r o r  n "0 - -  vB Se t t ing  - = 'By - '0' 
'IB - 710 .36 

710 35 
q=- 100% =--q;. 100%. 

Thus, the re la t ive  error only depends on the dimensionless m d m m  deflec- 
tion. 

L e t  us study a numerical example. L e t  us se t  no = 0.01. We then have 

3 36 
35 

y1 = 10- - loo%= 0,01%. 

I n  order t o  determine the  stress, w e  m u s t  f i nd  the  bending moment. W e  ob- 
t a i n  the  following from the  expressions (11.10) and (11.11) 

L e t  us expand the  i ls tegrand ' in  t h e  form of a Newton binomial 

(11.16) 

(11.16') 

Changing from the independent va r i ab le  s t o  the dimensionless va r i ab le  
5, 

dv 1 dv 
ds I dS. ' 

ds = Id< -=-- (11.17) 

and u t i l i z i n g  formulas (11.14) and (11.171, w e  obtain t h e  value ds' dv contained 

i n  the integrand of formula (11.16) 

Subst i tut ing expression (11.18) i n  formula (II .16 ' ) ,  performing in t eg ra t ion ,  
and confining ourselves t o  terms containing P i n  a power which is no g rea t e r  than 
the  t h i r d ,  w e  f i nd  the  bending moment 
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A t  t he  place where the s t r a i n  gauge is glued onto the  e las t ic  cant i lever ,  
t h e  moment comprises 

(11.19) 

where Z is  t h e  coordinate of t h e  locat ion where the s t r a i n  gauge i s  glued on 

(See Figure 66); t he  quant i ty  = - 2' 

1127 

'a 
a 

L e t  us introduce the  following notat ion 

81 = f ( l  -p); I 

Expression (11.19) then assumes the following form 

M = - O,P + e2p3. 

(11.20) 

(11.21) 

The stresses equal t he  following f o r  a rod having constant cross sect ion 

M a = -  
W '  

Jus t  as previously,  making the Chebyshev approximation (Figure 67) we ob- 
- CP. t a i n  the . ana ly t i ca1  expression of the approximating l i n e  (J W e  may w r i t e  2 - r  

t h e  r e l a t i v e  e r r o r  i n  t h e  following fo? 
a-a; - olP-002P3-CP -=L- 0 1 0 2 p2. q ( P )  = ~ - . 

a1 C P  C c 

Figure 67. 
of an E l a s t i c  Element of t h e  Canti- 
lever Type. 

Curve f o r  the Loading 

The conditions f o r  t he  minimum 
max 111 (P) I i n  t he  i n t e r v a l  (XPm,Pm) 
are as follows: 

Solving system (11.22) with res- 
pect  t o  t h e  coe f f i c i en t s  of proportionality 
c and nonl inear i ty  m, we  obtain 
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(11.23) 

Disregarding the  second term i n  the denominator of (11.23), w e  may w r i t e  1 1 2 8  
the  nonl inear i ty  coe f f i c i en t  i n  the following form 

(11.24) 

Subs t i t u t ing  the values of el and O 2  from formulas (11.20) i n  expression 

(11.24) and s e t t i n g  

w e  obtain 
5 15 3 
2 8 8 (11.25) 

1 _- ps + - p4  - - p 5  

1--P 
~. (1 + )LZ> 3 

For purposes of s impl i c i ty ,  t h e  nonl inear i ty  coe f f i c i en t  i s  sometimes es- 
In timated, based on the m a x i m u m  stresses a t  the seal  of the elastic element. 

t h i s  case, assuming t h a t  f3 = 0,  w e  obtain 

m = - __ (1 + I . * ) .  
10 

(11.26) 

W e  s h a l l  i l l u s t r a t e  the ca l cu la t ion  of the nonl inear i ty  coe f f i c i en t  ac- 

cording t o  formula (11.26) by means of an example. 

This i nd ica t e s  t h a t  w e  may perform the  measurements , beginning with 0.1 of t he  
e n t i r e  length of the scale. Then m = 0.003%. 

L e t  us set  0.01 and X = 0.1. 

W e  may represent formula (11.25) i n  the following form 

m = 0 3  (?E)’( 1 + )?) ( 1 + p + p2 - 2”- e 3  + p 4  + . . . ) . 

I n  t h i s  expression, i t  is  not necessary t o  take i n t o  account the terms 
which have an inf luence upon the second and subsequent 
the coe f f i c i en t  m, i .e.,  we may confine ourselves t o  the f i r s t  two expansior terms. 

s i g n i f i c a n t  d i g i t s  f o r  

I n  order t o  obtain a higher e l e c t r i c  s i g n a l ,  an e las t ic  element i s  some- 
times employed which does not have a constant cross sec t ion ,  bu t  i s  i n  the form 
of a beam of equal res is tance.  
f o r  such a beam, s t a r t i n g  with the stress a t  the  seal. 

L e t  us determine the nonl inear i ty  coe f f i c i en t  
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Since the curvature of t he  e las t ic  l i n e  i s  constant along the axis  of t he  
element i n  t h i s  case, t he  equation of t he  elastic l i n e  has the following form 

_ -  1 M  
p E.? 
- - = const,, 

where, taking i n t o  account t he  uniformity of t he  r i g h t  hand s ide ,  w e  may assume 
the following (Figure 6 8 ) .  

M = P (I -- AZ); J = J,. 

Expressing the angle I$ i n  terms of the  length of the a r c  and the radius of /129 
1 

P 

curvature 
y = - >  

w e  obtain 
1 

- ps in - ,  1 - - -- 
P EJo P 

where J i s  the moment of i n e r t i a  of the beam cross sec t ion  a t  the seal. 0 

L 

P 
L e t  us expand s i n  - i n  s e r i e s  i n  t h i s  expression 

I P  I--+---...). 12 14 

P EJo 3!p2  5!pQ 

z 
Due t o  the smallness of the displacement and, consequently, the r a t i o  - 

P ’  
w e  may confine ourselves t o  two expansion terms 

1 PI 12 

-= P - ( 1 - v ) s  EJO 

from which w e  have 

Solving t h i s  equation and discarding the negative value of t he  radius of 
curvature,  a f t e r  expansion of t he  r a d i c a l  i n  series w e  obtain the  following 

p=-  EJO{ l + - -  ( gy- 
-[-py2f.. .}.  E J o  

PI 
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Figure 68. 
lever having Equal Resistance. 

Deflection of a Canti- 

Based on the same considerations 
as previously,  l e t  us only r e t a i n  two 
terms of the series 

p = EJo [ 1 + +(3’]. 
P1 

For a beam having equal r e s i s t ance  
and constant height  h ,  the stress equals 

With allowance f o r  the formula 
obtained f o r  p , w e  obtain 

Decomposing t h i s  expression i n  series and confining ourselves t o  two ex- /130 
pansion terms, we  f i n a l l y  obtain 

= = 0,P - o p ,  

where 

N N 5  0 - - *  0 - 
2J0 12Jo (mop 1 -  9 2 -  

I n  order t o  determine the nonl inear i ty  coe f f i c i en t ,  w e  may employ formula 
(11.24). Subst i tut ion of the values obtained f o r  el and e2  

Se t t ing  

wh re v - is  the d om 
obtain 

f l  ti n of the end of a beam having equal r e s i s t ance ,  w e  

Ilt = - -- (1 + I.”, : ( Y)’ 
i.e., as compared with a beam of constant cross sec t ion  having the s a m e  values 

of 7 vOm ,and T, the  coe f f i c i en t  m of a beam having equal r e s i s t ance  i s  approxi- 

mately 10% grea t e r .  
8 1  Comparing the r a t i o  - f o r  these beams ( i n  the  case 6 = 0) ,  w e  
O2 
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can see t h a t  i t  is  2.5 times g rea t e r  than a beam having equal res is tance.  This 
means t h a t  i n  the case of identical stresses the nonlinearity c o e f f i d e n t  for a 
beam having equal resistance is greater, and consequently i t s  metrological pro- 
perties are worse. 

5 .  Elimination of Nonlinearity 

W e  may compensate f o r  nonl inear i ty  by a s t r u c t u r a l  method i n  c e r t a i n  
e las t ic  elements. 
amine one s p e c i f i c  example with a can t i l eve r  (Figure 69) .  

Without dwelling on the compensation methods, l e t  us ex- 

The problem is  as follows. W e  m u s t  f i nd  the  values of n and y f o r  which 

the  l eve r  arm P remains unchanged during its act ion,  and consequently the  moment 
i s  constant. 

L e t  us introduce the following notation: 

4,- horizontal  displacement of the p o i n t h  i n  the  case of the can t i l eve r  
def lect ion;  

%a- horizontal  displacement of the po in t  _a r e s u l t i n g  from r o t a t i o n  with 

respect t o  the  point  &. 

It may be seen from Figure 70 t h a t  

Abu =~h.C~[Y-- ‘ (~) l - - rxCOSy - r , [ cosy .  cosu’(l) + 
f s i n y  . sinv’(l)-cos1~]. 

L e t  us expand cos v’ ( 2 )  i n  series and le t  us discard terms with v’ ( 2 )  /131 
i n  a power higher than the second. After  s impl i f i ca t ion ,  w e  obtain 

(11.27) A h a = =  z ~ ‘ ( 1 ) r ~ s i t i y -  [V’([J1? r K  cosy. 
2 

The displacement may be rea- 

d i l y  described, by examining the expre- 
s s ion  (11.11) and assuming t h a t  x = 2. 
Expanding i n  series and confining our- 
s e lves  t o  two terms, w e  may approximately 
assume t h a t  

Figure 69. Diagram of the Compen- 
s a t i o n  f o r  Nonlinearity of an 
E l a s t i c  Element of t he  Cantilever 
Type 

The t o t a l  ho r i zon ta l  displacement 
A of po in t  2 has the following form 

A = A b -  Aha. 
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From t h i s  point  on, i t  i s  n a t u r a l  t o  r equ i r e  t h a t  t h e  lever arm P 
d i f f e r  from a constant quant i ty  by a minimum amount, o r ,  i n  other  words, t h a t  t he  
quant i ty  A approximate zero i n  the b e s t  way. However, as w i l l  be seen below, i t  
is  possible  t o  s a t i s f y  the  condition t h a t  the quant i ty  A i s  i d e n t i c a l l y  equal t o  
zero 

a, - A,, = 0, 

f o r  any value of the force P i n  the  i n t e r v a l  

j,p,,, < p < P,n. 

(11.29) 

I n  t h i s  case, the 
e n t i r e  measurement process. 

lever am P w i l l  be unchanged t..roughout t he  

It may, be seen from formulas (11.27), (11.28) and (11.29) t h a t  i t  i s  nece- 
ssary t o  determine the  expression f o r  v ' ,  a f t e r  which the problem may be r ead i ly  
solved . 

I n  order t o  determine the angle 1132 
of r o t a t i o n  a t  the end of the can t i l eve r ,  
l e t  us t r a n s f e r  the force P from p o i n t s  
t o  point  b, with the  addi t ion 
responding moment M. I n  t h i s  case, the 
de f l ec t ion  due t o  the force P comprises 

of t he  cor- /f 
b &rKy? I 

-izJ Plx2 Px3 

u p = - -  2 E J  + 6EJ' 
Figure 70. 
pensating Lever. 

Displacement of the Com- 
and the de f l ec t ion  due t o  the moment M 
comprises 

MXZ 

2 E J  VM = --* 

Employing the p r i n c i p l e  of superposit ion w e  obtain the t o t a l  de f l ec t ion  

I l . I X Z  Pix2 Px3 +---. v = - - - -  
2 E J  2EJ  6 E J  

(11.30) 

Di f f e ren t i a t ing  equation (11.30), w e  obtain the  expression f o r  the angle 
of ro t a t ion  

(11.31) 

Subst i tut ion of the dependence (11.31) i n t o  formula (11.28) and subsequent 
i n t eg ra t ion  y i e l d  

M"13 5 IMpp 1 PV Ab + - + -. - 
I J ( E J ) ' ~  24 (EJ)Z 15 ( I F J ) ~ .  
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Since the moment equals 

w e  then have 

IM = P r,cos y ,  (11.32) 

(11.33) 

I n  addi t ion,  l e t  us f ind  the displacement A,a. The absolute  magnitude of 

%a v' (2) must be  included i n  expression (11.27) according t o  t h e  de f in i t i on  of 

(See Figure 70). Af t e r  c e r t a i n  elementary s impl i f ica t ions ,  w e  ob ta in  

Subs t i tu t ion  of equation (11.32) y i e lds  

Af te r  c e r t a i n  s impl i f ica t ions ,  w e  may w r i t e  t h e  condition f o r  the un- 1133 
changed moment (11.29) with the  use of expressions (11.33) and (11.34) as 
follows 

P V  - ( - - r : ~ c o s 2 y + . - r ~ ~ c o s y +  4 2 - - - ~ : j - ~ r ; c o s 3 y  2 
2 ( E J ) 2  3 3 15 (11.35) 

- 2EJ pc ( ~ r :  sin y cosy -1- r,l sin y )  = 0. 

The l e f t  hand s i d e  of equation (11.35) i d e n t i c a l l y  vanishes when the  ex- 
pressions i n  the  parentheses equal zero. 

For the  case X = 0 and X = IT, w e  ob ta in  the  following equation with re- 

i- r; f- .- 4 rzl 5 - 2 rK/2 A- -- 2 13 = 0, 
3 3 15 

(11.36) ._ 

n: spec t  t o  

H e r e  t he  superscr ip t  corresponds t o  the  value A = 0 ,  and the  subscr ip t  
corresponds t o  A = IT. 

I n  t he  case X = 0 ,  i t  is impossible t o  obta in  a so lu t ion ,  s ince  i n  t h i s  
case equation (11.36) has no pos i t i ve  real  root.  This i s  clear i n  physical  
terms: 

t o  compensation, but, on t h e  opposite,  leads t o  an increase  i n  nonl inear i ty .  

t he  displacements \ and A have the  same s igns ,  which does no t  l e a d  ab 
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Thus, the value of X = .rr is  t h e  only so lu t ion  t o  the problem which has  a 
real meaning. 
i s  shown i n  Figure 71. 

The arrangement f o r  an e las t ic  element corresponding t o  t h i s  case 

I P  
n W e  may determine the length 

of t he  compensating l e v e r  according t o  
equation (11.36). 

Taking i n t o  account only the  sub- 
s c r i p t ,  w e  obtain 

. p = - j o .  (11.36') ri--r;l 4 + - r K [ - -  2 

3 3 15 

I f  w e  set 'i( = a 2, then t h i s  ex- Figure 71. Elastic Element with 
Compensating Lever. pression has the following form: 

W e  s h a l l  solve equation (11.36') 

approximately. W e  s h a l l  use do) = 0.5 

- 0  4 2 2 
3 "  3 "  15 

p; - -1- - p - 

as a rough root ,  and w e  s h a l l  r e f i n e  i t  on the  b a s i s  on the Newton method ac- 
cording t o  the recurrence formula 

where 

(11.37) 

1134 

The f i r s t  approximation y i e l d s  p1 = 0.5802. Replacing 4~ (0 1 by d l )  in 
k 

formula (11.37), w e  obtain the  following approximation pk" = 0.578. 

Comparing both r e s u l t s ,  w e  see t h a t  the second approximation y i e lds  a satis- 
factory r e s u l t .  

Thus, asswning that  the length o f  the compensating lever i s  % x  0.5781 i n  
a real constmction and making the lever more r i g i d  than the basic beam of  an 
e l a s t i c  element, we may practically eliminate the nonlinearity. 

W e  must point  out the following. 

Since can t i l eve r s  have very s m a l l  nonl inear i ty  i n  the case of s m a l l  de- 
f l e c t i o n s ,  only a s m a l l  value is compensated. Due t o  t h i s  f a c t ,  i t  must be 
expected t h a t  

p a r t i c u l a r  importance, 

l a rge  deviations from the calculated value of rk are of no 
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L e t  us i nves t iga t e  . t h i s  problem i n  g rea t e r  d e t a i l .  On the b a s i s  of ex- 
pressions (11.33) and (11.34), w e  obtain 

2 2 1 (- E)'( j- r:l cos2 y -t- -- 3 rX12cos y -t - 15 13 + r :  cos3 y 
2 E J  3 

5c Assuming t h a t  A= T and s e t t i n g  p = - , w e  a r r i v e  a t  the following k 
expression 

(11.38) 

For the given value of 45, t he  r i g h t  hand s i d e  of expression (11.38) is 

constant. Designating i t  by the quant i ty  U,  w e  obtain 

(11.39) 
1/ ~ 2 A h  - A L  (LLJ 

I 

Figure 72 presents  a graph f o r  the dependence U = U(p,).  

equation (11.38) changes i n t o  equation (11.36), and the  point  a t  which the curve 
i n  Figure 72 i n t e r s e c t s  the abscissa  ax i s  serves as i ts  solut ion.  

In  the case U = 0,  

It may be seen from the graph t h a t  U i s  s m a l l  i n  a wide range of values f o r  
the compensating l eve r  arm. This means t h a t  g rea t  accuracy is not required when 
constructing the compensating lever. 

This f a c t  a l s o  makes i t  possible  t o  increase the  s e n s i t i v i t y  of the e l a s t i c  
element ( i f  i t  is  i n s u f f i c i e n t ) ,  without changing its dimensions, s ince  i t  i s  /135 
apparent t h a t  the smaller i s  p ,  the  larges the s t r e s s  i n  the calculated cross 
sec t ion ,  other  conditions being equal. I n  addi t ion,  due t o  the s m a l l  value of U 
i n  t he  calculat ions i t  is  possible  t o  disregard the deformation of the compen- 
s a t i n g  lever.  I n  t h i s  case, i f  t he  l imi t ing ,  permissible value i s  given 

E =  A6a -3 
I '  

which represents a r e l a t i v e  change i n  the lever  arm, calculat ing the quan- 
t i t y  U according t o  formula (11.39), w e  may determine the value of p from equation 
(11.38). 
i s  d i f f i c u l t ,  and a l s o  considering the f a c t  t h a t  g rea t  accuracy i s  not required,  
t o  determine the quant i ty  p i t  i s  expedient t o  employ the graph shown i n  Flgure 72. 

Taking the f a c t  i n t o  account t h a t  the so lu t ion  of t he  cubic equation 

However, most frequently the  permissible value of the nonl inear i ty  co- 
e f f i c i e n t  m is  given, and not of the quant i ty  E .  

L e t  us transform the quant i ty  U s o  t h a t  it may be expressed i n  terms of 
the nonl inear i ty  coe f f i c i en t .  The bending moment i n  the  cross sec t ion  corres- 
ponding t o  the locat ion where the s t r a i n  gauge i s  glued on has the  following 
form with allowance f o r  a change i n  the  l eve r  arm 
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Subs t i tu t ing  the  value of , 
on the  b a s i s  of formula (11.38), and in- 

troducing t h e  nota t ion  B = rk 

obtain the  expression f o r  M i n  a form which 
i s  s i m i l a r  t o  t h e  dependence (11.21) 

+ z  a, we 

M = 0,P - 0 . p 3 ,  
r, 

. . .  

where 
0, == 1(1 -P), I 

The nonl inear i ty  coe f f i c i en t  may be  
determined by formula (11.24). Subs t i tu t ing  

1136 

Figure 72. Graph of t he  Dependence the  dependence (11.40) , w e  obta in  
u = u (Q. 

By comparing the  expressions (11.41) and (11.38), i t  i s  clear t h a t ,  i f  w e  
introduce the  following nota t ion  

(11.42) 

then the  form of the  graph shown i n  Figure 72 does no t  change. It is  sometimes 
more expedient t o  start with t h e  permissible  values of the  stress [a ] ,  which 
provides t h e  necessary s igna l ,  r a t h e r  than with t h e  l imi t ing  value of the  force  

Pm. I n  t h i s  case, formula (11.42) acquires  t h e  following form 

(11.43) 

It i s  convenient t o  employ formulas (11.42) and (11.43), s ince  they con- 
t a i n  the unknown quant i ty  B .  I n  addi t ion ,  t h e  nonl inear i ty  of t h e  element may 
be  customarily determined, based on the  maximum stresses of the  seal. 
ca lcu la t ion  may be  thus s impl i f ied ,  s ince  Z 

Taking t h i s  f a c t  i n t o  account and comparing t h e  expressions (11.38), (11.39) 

The 
= 0 ,  and consequently B = 9 ~ .  a 

and (11.43), w e  obtain 4 2  2 2 p3- -p  +- 

(1 - P K I 3  

R 3 K 3 P K - -  

~ z z  v, (11.44) 
15 _- 

where 

(11.45) 

A graph showing the  dependence V = V (b) i s  given i n  Figure 73. I f  t he  

value of pk is  given, w e  may then determine the magnitude of V based on ex- 

pression (11.44), and then w e  may determine a l l  dimensions of the e last ic  ele- 
ment based on the formula (11.45). However, only the  permissible  values of 

- -  t he  nonl inear i ty  coe f f i c i en t  m and the  stress [a]  are usual ly  known.. In- . th i s  
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case, i t  i s  advantageous t o  employ the  graph shown i n  Figure 73. 

L e t  us give a numerical example. L e t  us assume t h a t  t he  length of the 
element is  7. = 10 cm, the  thickness h = 0.2 cm, the  permissible stress [G] = 
= 2000 kgf/cm2 f o r  Pm = 10 kgf , X = 0.1. 

m = 0.02% = 0.0002 as the  nonl inear i ty  coe f f i c i en t .  

W e  s h a l l  use the s m a l l  quant i ty  

W e  f i nd  V 0.78 from (11.45). W e  may determine pk 0.3 based on the graph 
given i n  Figure 73. The r e s u l t s  obtained confirm the  above statements. Using an 
i n s i g n i f i c a n t  value €or the nonl inear i ty  coe f f i c i en t ,  equal t o  0.002, w e  obtain /137 
the  value pk = 0.3, which g rea t ly  d i f f e r s  from t h a t  found above p = 0.578. k 

Thus, f o r  any length of the compensating l eve r  i n  the i n t e r v a l  0.32 < r c 
< 0-578 2- the  nonl inear i ty  coe f f i c i en t  does not exceed m = 0.0002 ( i t  p rac t i -  
c a l l y  equals zero).  

k 

I n  conclusion, l e t  us determine the 
width of the e l a s t i c  element 

0 -- e 5  CM. GP,,J (1  - P h )  
rl2 [a] 

I f  the s t r u c t u r e  of the e l a s t i c  ele- 
ment i s  the  same as t h a t  shown i n  Figure 

7 1 ,  the  width of each plane comprises y = 

= 2.5 cm. 

6. E l a s t i c  Element -of the Circular  Type 

b 

L e t  us examine the nonl inear i ty  of 
Figure 73. 
dence V = V ( p k ) .  

t u r e  (Figure 7 4 ) .  This problem d i f f e r s  from t h a t  invest igated above i n  the 
f a c t  t h a t ,  i f  a change i n  the l eve r  arm i n  the  loadinn process i s  a quan- 
t i t y  of t he  higher order of smallness i n  terms of the fundamental displacements 
f o r  a can t i l eve r ,  then f o r  the given elastic element a change i n  the l eve r  arm 
cons i s t s  of bas i c  displacements. Therefore, i t  must be expected t h a t  c i r c u l a r  
types Of e l a s t i c  elements have g rea t e r  nonl inear i ty  than can t i l eve r s .  

Graph Showing the Depen- a c i r c u l a r  type of e l a s t i c  element having 
a constant cross sec t ion  and s m a l l  curva- 

J u s t  as i n  the case of the l i n e a r  formulation, l e t  only inves t iga t e  one 
fou r th  of the e las t ic  element, which represents a th in ,  curved beam fastened 
on one end and loaded on the other  end by the force and the  unknown moment 

Mo (Figure 75). 

placements, and advancing the hypothesis of plane cross sec t ions ,  w e  obtain the  
w e l l  known re l a t ionsh ip  between a change i n  the curvature and the bending mo- 
ment. 

2 

Disregarding the elongation of t he  r ing  n e u t r a l  ax i s ,  as w e l l  as the dis- /138 
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1 1 -  M 
R Ro EJ ' 

1 where - is the  i n i t i a l  beam curvature. 
RO 

(11.46) 

P 

- i 
Figure 74. Elas t ic  Element of t h e  Figure 75. Computational Diagram of 
Ci rcu lar  Type. a Ci rcu lar  Type of E la s t i c  Element. 

If the  width of t he  r ing  t ransverse  cross sec t ion  is  considerably g rea t e r  
than i ts  he ight  , then plane deformation occurs,  and the following quant i ty  

must be  everywhere assumed, ins tead  of t he  modulus of e l a s t i c i t y  E. 

L e t  us select a f ixed  coordinate system X'Y'  ( l e f t  handed) with the  o r i g i n  
a t  the  f r e e  end of t he  beam. The curvature of t he  e las t ic  l i n e  a t  an arbi-  
t r a r y  l i n e  A equals a, where Y i s  the  angle between the  tangent a t  t h e  poin t  A 

and the  axis y'  (See Figure 75). 
ds 

The bending moment a t  po in t  A i s  

P 
2 

M z IM0 - - - ,d. 

.XI = J sir1 ??(IS. 

Then the  bending moment a t  poin t  A assumes the  following form 

It may be seen from Figure 75 t h a t  dx' = s i n  Yds, and consequently 
s 

0 

1139 
I 

P hf == M, - - ~- f sin Sds. 
2 .  

0 

(11.47) 
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1 dY 
R ds  L e t  us s u b s t i t u t e  the curvature - = - and t h e  expression f o r  t he  bending 

moment (11.47) i n  r e l a t ionsh ip  (11.46) , and w e  ob ta in  

P 
M0--f 2 sin +ds 

0 1 d4J 

ds EJ Ro 
- --+--. -- (11.48) 

L e t  us d i f f e r e n t i a t e  both p a r t s  of equation (11.48) wi th  respec t  t o  s 
-=-- sin +. da+ 

ds2 2EJ 

P Set t ing  2 = p,  w e  ob ta in  the  w e l l  known d i f f e r e n t i a l  equation of t h e  e las t ic  

l i n e  f o r  a g rea t ly  curved t h i n  rod 

(11.49) 

which w e  s h a l l  employ t o  study t h e  nonl inear i ty  of t he  r ing.  

Equation (11.49) may be  r ead i ly  integrated.  
dY t h e  equation by - ds 

L e t  us mult iply both p a r t s  of 

Performing in t eg ra t ion ,  w e  ob ta in  

from which w e  have 

Se t t ing  

--- w e  obtain 

(11.50) 

Separating t h e  var iab les  and in t eg ra t ing  the  l e f t  and r i g h t  hand s ides  of 
equation (11.50), w e  obtain 

The l e f t  hand s i d e  cannot be  in tegra ted  i n  terms of elementary functions.  1140 
Expansion of t he  integrand i n  the  form of a Newton binomial and subsequent 

i n t eg ra t ions  term by term y i e l d  

_-  
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The i n t eg ra t ion  constant c may be  determined from the f i r s t  boundary condi- 2 
t ion :  f o r  Y = 0 t h e  arc s = 0. I n  t h i s  case c = 0. 2 

Thus, ins tead  of expression (11.51) , w e  obtain 

0’ The second condi t ion s t i p u l a t e s  t h a t  t he  arc s = R Y f o r  Y = Y 

Sat i s fy ing  t h i s  condition, w e  arrive a t  the  following expression: 
0 0  

(11.52) 

W e  s h a l l  look f o r  the parameter R i n  t he  form of expansion i n  powers of p: 

(11.54) a = e0p + Q1p2 -I- Q g 3  + . . . 
Squaring equation (11.53) , subs t i t u t ing  expansion of (11.54) , and -- due 

t o  the  s m a l l  deformation -- confining ourselves t o  terms containing f ac to r s  of 
p a t  powers no higher  than the  second, w e  ob ta in  

Equating the  coe f f i c i en t s  f o r  i d e n t i c a l  powers of p ,  w e  obtain t h e  following/l41 
system of equations: 

I?;!); 71 ,-CJ. ‘!or$; 

2 

$,$,sin ( P o  - glr)i = 0; 
3 
16 

23,8,$, silt +o  - 

Subsequent so lu t ion  of these equations y i e lds  
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I 

Q0 = - 2 G  . 
EJ ' 

,fR;sin+,, . 
Q1=- - _ _  

$0 (E42 ' 
R~ 14sin2+,  3sin24 

-- - ~ 

0 - - 0 - 
L-2 - (EJ)3 ( +; 

Subs t i tu t ing  the  expansion (11.54) thus obtained i n t o  the so lu t ion  (11.521, 
w e  ob ta in  

I s = vQ> ~ , p  + 9,pZ [+ - sin + (Bop + Q1p2) + 2 

-I- 7 o2 --op (+ + $sin29)1. 

A f t e r  simple transformations,  t h i s  expression acquires  the  following form 

+ sin 2?), __ 
32 

3 8 ,  30; 
-sin 9 ~ -b 9 __ 

4 16 

Turning t o  Figure 75, w e  can see t h a t  an increase  i n  the  absc issa  value 
a t  any poin t  equals 

s +O 

% 4J 

A,r sin 1;ds -- Rosin +d). (11.56) 

W e  obtain the  following from expression (11.55) 

Based on formula (11.56), w e  may determine the  increase  i n  A a t  the 1142 xo 
poin t  where the  load i s  applied 
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Deformation of the hor i zon ta l  r i ng  diameter (See Figure 75) equals 

v = 2A~o. 

Rl, R found above and replacing 2p = P ,  0’ 2 Subs t i tu t ing  t h e  values  of R 

w e  obtain the following expression f o r  t he  deformation of t he  hor izonta l  dia- 
m e t e r  of a c i r c u l a r  elastic element 

(1 - cos 2+,) 4- 2 ( 1  - cos3 to)]. 3 sin +o 

$ 0  

- __.-. 

The f i r s t  term, which represents  t he  l i n e a r  dependence, coincL&s wi th  
formula (1.66). I f  there  is no r i g i d  p a r t  of the e last ic  element, i .e. ,  

71 
\ y o  = 7, formula (11.57) acquires  t h e  following form 

(11.58) 

The f i r s t  term of t h i s  expression is  the  l i n e a r  dependence f o r  t h e  
r ing ,  and the  second component is a s m a l l  nonl inear  deviat ion from it. 

Similar ly  t o  the  deformation, w e  may determine the  stress. 

1 
R 

For t h i s  pur- 
pose, w e  f i r s t  f i nd  the  expression of the  bending moment i n  an a r b i t r a r y  cross  

sect ion.  Subs t i tu t ing  the  value of the  curvature -, determined by expression 

(11.50), i n  equation (11.46), w e  ob ta in  

1143 

(11.59) 

W e  may thus r ead i ly  determine the  bending moment. 

L e t  us rewrite expression (11.59) i n  another form 

Decomposing the  expressions i n  the  parentheses and t h e  brackets  i n  the  form 
of a Newton binomial and confining ourselves t o  terms with p i n powers which are 
no higher  than the  second, w e  obtain 

1 

J ~ ~ ~ ~ ~ + ~ . ~ ? , ” , o s ~ ( n , p +  2 Q1p2)- 

3 3 
I -- 1 
8 2 

- - 00’ p2 cos2 $ - - c, ( 9 , p  -I- 9#*) - 
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L e t  us s u b s t i t u t e  t he  values of R o, R1, R 2  found above i n  expression (11.60). 
2 L e t  us transform and group together the terms with p and p 

J u s t  as i n  formulas (11.57) and (11.58), i n  t h i s  formula the f i r s t  com- 
ponent y i e lds  t h e  l i n e a r  dependence, and the second component represents a s m a l l  
nonlinear deviation from it. 

The moment i n  the ho r i zon ta l  cross sec t ion  (4' = 0) equals 

(11.62) 
io.-j -1- 4 ~ . J  [ ~~- + -1 .- 2 +; 

-_ -1- 
PR 

M ,  - o ( - sin 6 ,  P 2 R ;  sin o0 I 2 sin? %in 2 ( ~ ~  

W e  may f ind  the magnitude of the r e l a t i v e  e r r o r  q(P)  i n  percent by dividing 
the second component by the f i r s t  

/144 Expression (11.63) a l s o  may be used t o  determine the  r e l a t i v e  e r r o r  i n  - 
terms of stress f o r  Y = 0. A s  i s  known, the formula f o r  the stress has the 
following form 

(11.64) M 
W 

a =  -. 

For e las t ic  elements having a constant cross sec t ion ,  the r e s i s t i n g  moment 
equals 

where h is  

Based 
ho r i zon ta l  

the height  of the e l a s t i c  element cross sect ion.  

on formulas (11.62) and (11.64), w e  may determine the  stress i n  the 
cross sec t ion  

Expression (11.61) makes i t  possible  t o  determine the  stress i n  any cross 
sect ion.  
gauge is  glued on, i .e . ,  i n  t he  horizontal  plane. 

However, w e  are i n t e r e s t e d  i n  the stress a t  the point  where the s t r a i n  

J u s t  as previously,  w e  may f ind  the maximum r e l a t i v e  e r r o r ,  o r  the non- 
l i n e a r i t y  coe f f i c i en t  m, by employing the Chebyshev approximation (See Figure 65). 

Ih. 

133 



L e t  us set 

(11.66) 

and then expression (11.65) acquires the following form 

a. = 0 , ~  + e p .  
W e  may assume t h a t  t he  l i n e a r i z a t i o n  condition has the  same form as before ,  

i .e. ,  based on formula (11.4). For any value of P ,  the  relative e r r o r  is  

o r  

Excluding the i n i t i a l  s ec t ion ,  i n  which no measurements w e r e  made, j u s t  as /145 
previously w e  may w r i t e  the following system of two equations,  according t o  the 
s t i p u l a t i o n s  of the problem: 

0 l +  OzhP,, = m ;  1 - 01 + OZrn = - m, 1-  
C C 

from which w e  may r ead i ly  determine desired proport ional i ty  coe f f i c i en t  
the maximum nonl inear i ty  m: 

c and 

0 
2 

c = e, -/----2-P,(1 + h); 

It may be seen from formula (11.65) t h a t  the nonl inear i ty  decreases f o r  

Ro 

For the case of small  nonl inear i ty ,  the second term i n  the  denominator of 

XO-*O, h - f o ,  $o-+o, and J -t OD 

the expression f o r  m i s  always negl igibly s m a l l  as compared with the  f i r s t  term, 
and i t  may be disregarded. 
has the  following form 

The approximate expression f o r  the coe f f i c i en t  m 

l e  - 111 = - L P , ( 1  -A). (11.67) 2 01 

L e t  us ca l cu la t e  an e l a s t i c  element with L e t  us give a numerical example. 
the following i n i t i a l  data:  P = 100 kgf ,  R 

Y o  = 46".  

A = 0.1. 

= 20.975 mm; b = 1 2  mm; h = 1.95 mm; 0 
The measurements may be made from the value of the load 0.1 P i . e .  m' 
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Formula (11.67) y i e l d s  m 0.6%, i.e., the value obtained f o r  t he  nonlin- 
e a r i t y  coe f f i c i en t  is  large, i f  t he  f a c t  is taken i n t o  account t h a t  t h i s  coef- 
f i c i e n t  character izes  the  r e l a t i v e  systematic e r ro r .  For example, i f  a force 
measuring device has 1000 divis ions on the  sca l e ,  then i n  t h i s  case the e r r o r  
amounts t o  s i x  divis ions,  even i f  random e r r o r s  i n  the  readings are not taken 
i n t o  account. Thus, t he  assumption advanced a t  the beginning of t h i s  s ec t ion ,  
s t a t i n g  t h a t  a c i r c u l a r  e l a s t i c  element has poor metrological propert ies  as com- 
pared with a can t i l eve r ,  has been substant ia ted.  

A comparison w a s  made with experiment f o r  t he  numerical example presented. 

Readings of the secondary device w e r e  made, &ich w e r e  proport ional  t o  the 
e f f e c t i v e  stress a t  t h e , p l a c e  where the  s t r a i n  gauge w a s  glued on, as a function 
of the applied load. A s  a r e s u l t  of t he  experiment, the following nonl inear i ty  
coe f f i c i en t  m* w a s  obtained: 

in* = 0,7 ?/o. 

A 95% confidence i n t e r v a l  was compiled f o r  the nonl inear i ty  coe f f i c i en t  1146 - 
0,63 y, < m < O , n ? / ,  . (11.68) 

This means t h a t ,  with a p robab i l i t y  of 0.95, the unknown value of the non- 
l i n e a r i t y  coe f f i c i en t  m ,  which w a s  estimated by the  quant i ty  m * ' =  0.7% l ies  with- 
i n  the limits establ ished by inequa l i ty  (11.68). 
method f o r  compiling the confidence i n t e r v a l  f o r  the nonl inear i ty  coe f f i c i en t  m. 

Chapter I11 describes the  

Thus, it may be seen t h a t  t h e  t h e o r e t i c a l  value obtained f o r  t he  nonl inear i ty  
coe f f i c i en t  c losely coincides with the  experimental data. 

It may be r ead i ly  seen from the calculat ion of the nonl inear i ty  coe f f i c i en t  
t h a t  similar formulas w i l l  hold f o r  a r i n g  with r i g i d  sec t ions ,  not only on the 
v e r t i c a l  ax i s ,  bu t  a l s o  on the ho r i zon ta l  ax i s  (See Chapter I, P a r t  2 ) .  The 
order of determining the nonl inear i ty  coe f f i c i en t  does not change. Only the  
in t eg ra t ion  l i m i t s  of the angle Y change. 

7. Nonli-neari~ty 0.f E l a s  t i c  Elements Measuring S m a l l  Loads 

Section 6 of Chapter I invest igated e las t ic  elements f o r  measuring s m a l l  
loads having a s p e c i a l  device f o r  producing considerable relative deformations 
i n  s t r a i n  gauges mounted on r i g i d  columns. W e  s h a l l  study the nonl inear i ty  of 
t he  e las t ic  element shown i n  Figure 50. Due t o  the  symmetry of t he  equivalent 
system (See Figure 53), w e  s h a l l  examine h a l f  of the beam. 

W e  shall designate the load belonging t o  one h a l f  by the quant i ty  P. Fig- 
ure 76 presents a computational diagram. 

The inf luence of the s t r a i n  gauge on the operation of the elastic element 
3 = X2e * as a whole i s  taken i n t o  account by the inf luence of the bending mment X 

%he experiment w a s  performed i n  the electrotensometric laboratory of the 
NIKIMFa under the guidance of A. I. Drabkin. 

_ _  - 
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0’ A s  a r e s u l t  of t he  bending moment M 

t he  angle of r o t a t i o n  a t  the place where 
the  load is  applied equals zero. Since 
the  construction of t he  elastic element 
provides f o r  strict vertical displacement 
of the point  ,of appl icat ion of a trans- 
verse load P, i t  is apparent t h a t  t he  
system under consideration elongates 
t o  a c e r t a i n  extent  A C  i n  the ho r i zon ta l  
direct ion.  This means t h a t  the force T ,  
which influences the  t ransverse deflec- 
t i ons  of t he  beam, a l s o  influences the 
system i n  the longi tudinal  direct ion.  
W e  may determine the force T ,  based on /147 

Figure 76. Computational Diagram f o r  
an Elastic Element Measuring Small 
Loads. 

Hooke’s Law 
C 

Tdx 

n 
On the other  hand, w e  may determine the elongation of t h e  beam Ac as a change 

i n  the  project ion d the  can t i l eve r  under a load. 

P a r t  4 of Chapter I1 w a s  devoted t o  the  problem of the de f l ec t ion  of a cant- 
ilever. According t o  expression ( I I . l l ) ,  t he  elongation Ac may be w r i t t e n  as 

follows 
C 3 

b Bc=c-w +(- \ dx dv I ‘211 dx2 

where the integrand 
t o  formula (11.11). 

is given i n  a rectangular coordinate system, i n  cons t r a s t  

W e  thus have 
3 

C 
Tdx f[ f + ($-)2r dx.  .r==- 0 0 

I n  the  case of a constant beam cross sec t ion  ( j u s t  as i n  our case), w e  may 
r ead i ly  determine the  following expression f o r  the force Tfrom t h i s  equation 

T h e  force T, which acts i n  the d i r ec t ion  shown i n - F i g u r e  76, somewhat de- 
creases the def lect ion.  Consequently, the moments formed by the forces P and T 
must have equal s igns.  

L e t  us formulate the  equation f o r  t he  e l a s t i c  l i n e .  It must be noted t h a t  
i t  is not  necessary t o  make p rec i se  allowance f o r  the curvature f o r  ordinary 
e l a s t i c  elements with s t r a i n  gauges which are glued on, s ince  t h i s  refinement 
has no influence on the change i n  the bending moment and, consequently, the 
stress. 
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The s i t u a t i o n  is  somewhat d i f f e r e n t  i n  t h i s  case, s i n c e  the value of t he  s ig-  
n a l  enter ing the secondary apparatus depends on the angle of r o t a t i o n  of the 
cross sec t ion  containing the  r i g i d  column, and not  on the stresses a r i s i n g  i n  the  
e l a s t i c  element under a load. I n  i t s  turn,  the angle of rotacion of t h i s  
cross sec t ion  &pends on which value of t he  curvature is  employed -- the  p rec i se  
o r  approximate value. The d i f f e r e n t i a l  equation of an e las t ic  l i n e ,  with 
allowance f o r  t he  longi tudinal  force,  has the following form 

The second term i n  the r i g h t  hand s i d e  of t h i s  equation character izes  a 
small nonlinear change i n  the  bending moment when t h e  elastic element is  loaded 
by an ex te rna l  load P. L e t  us determine the nonl inear i ty  coe f f i c i en t  of t he  
system, which is  t h e  r e s u l t  of including the longi tudinal  force T and a p rec i se  
value of the curvature. Formulating the expression f o r  the bending moment M 
and s u b s t i t u t i n g  i t  i n  the d i f f e r e n t i a l  equation, together with the value of 
the longi tudinal  fo rce  T found above, w e  obtain the equation of the e las t ic  
l i n e  

1148 

d 5  
dxa 
- 

P (c- X )  - - M o  + X3Eo ( S  - X )  F . 0  
- _ -  +7- - 3 EJ 

(11.69) 

where E (s - x ) i s  the Heavyside u n i t  function which has the property 0 
1, X < S  c 0, x > s ;  

EO (S - X) = 

where s is the coordinate of the pos i t i on  of t he  r i g i d  column, measured from 
the  damped end. 

Expanding the denominator of the l e f t  hand s i d e  and the integrand of t he  
r i g h t  hand s i d e  of equation (11.69) i n  a series i n  the form of a Newton bio- 
nomial, w e  obtain 

3 1 3 + 8 - 16 + . . .] "1 [ 1 - (u')2 + 
15 35 + - 16 (u')S + . . . 

(11.70) 

Expression (11.70) is an i n t e g r a l  d i f f e r e n t i a l  equation with s m a l l  non- 
l i n e a r i t y .  W e  s h a l l  t r y  t o  f ind  its so lu t ion  i n  the following form 
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r where p = - EJ' 
We f ind  the  following from formula (11.71) 

(11.71) 

(11.72) 

L e t  us determine the  angle of r o t a t i o n a t  t h e  pos i t i on  of t he  column 
wi th  t h e  coordinate s. Subs t i tu t ing  the  expressions (11.71) and (11.72) i n  
equation (11.70) and equating the  coe f f i c i en t s  f o r  i d e n t i c a l  powers of p, w e  
obta in  t h e  following system of d i f f e r e n t i a l  equations i n  terms of t h e  unknowns 
V0' vl, V2' * . *  : 

= - ( c -x )  + M O - x 3 E O ( s - x )  . 
P 

v; = v; = V I  = 0, 
M --'X3Eo ( S  - x )  

P 
C 

v* = -- 3EF voJ ( v p f x ;  
2 Pc 3 

0 

. . . . . . . . . . . . . . . . . . . . . . .  

(11.73) 

L e t  us confine ourselves t o  terms containing 1-1 a t  a power which i s  no higher  
than the  four th  power. W e  f i nd  v' and vo from t h e  f i r s t  equation (11.73) 0 

(11.74) 

MOAXX3 xz - (c - --) x + y + c,, 0 \<x< s; v'=[ 0 P 

s\(x\<c;  

It is  apparent that expressions (11.74) and (11.75) may be  rewr i t ten  i n  
t h e  following form, by employing the  u n i t  function: 

1149 

where 
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The in t eg ra t ion  constants C and D1may be found from the boundary condi- 1 
t i ons  v' (0) = vo(0) = 0. W e  thus have C1 = D1 = 0. 0 

W e  may f i n d  the  constants C2 and D2 from the  condition of compatability of j150 

deformation a t  the point  s ,  which may be w r i t t e n  as follows 
ui (s -  0) = u;, (s + 0); 

u, (s - 0) = vo (5 + 0). 

Solving. this system, w e  obtain 

x,sx x s2 (11.77) P EO ( x  - s) + 2P E, ( x  -3). -- 

W e  may determine the unknown mement M from the condition v i ( c )  = 0. On 
0 

t h i s  b a s i s ,  w e  obtain the  following from equation (11.76) 

(11.78) 

W e  may determine v' from the t h i r d  equation (11.73). 2 L e t  us w r i t e  t h i s  

equation, taking i n t o  account the so lu t ion  (11.76), i n  the following form 
5 AX4 - ( B  - 2 f l 2 )  x3 - (A3 - 3AB)  X 2  - 

- B (2Az- B) x - A B 2 ] ,  
where 

Performing 

Mo - X 8 p  (S - 4 , . B=-E,(x-s). x3s 
P 

A = C -  
P 

i n t eg ra t ion ,  w e  obtain 

W e  s h a l l  not  determine the in t eg ra t ion  constant C s ince  i t  is not con- 3' 
tained i n  the a n a l y t i c a l  expression of the angle of r o t a t i o n  a t  the point  S. 

W e  may f ind  the quant i ty  v' from the fourth equation (11.73). 3 Subs t i t u t ion  

of the so lu t ions  (11.76) and (11.77), subsequent i n t eg ra t ion  and s impl i f i ca t ion  
lead t o  the  followinn equation 
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x3s x sa 

2P + p xE, (x- s) - E, ( x  - s)} , 

where 

In t eg ra t ing  equation (II .80),  w e  obtain 

v + =- 
2sJc P 

I- x3s 2 x3s* + - x  E, ( x  - s) - - XE, (x- s) + C,E, ( x -  s). 2P 2P 

/151 
(11.80) 

(11.81) 

It is  not  necessary t o  determine the in t eg ra t ion  constant C4 f o r  t he  same 

reasons t h a t  the constant C w a s  no t  determined. 3 

Combining the  solut ions (11.76), (11.79), and (11.81) with formula (11.72), 
we  obtain the following expression f o r  t h e  angle of r o t a t i o n  a t  the po in t  s :  

(11.82) x --___ +At's-  --- 2A" 
4N (dt - -31, [ d A's2 2 3 hZc 

where h is the  height  of t he  beam transverse cross section, and 

A ' = c  M Q - x 3  

P 
J u s t  as i n  the l i n e a r  formulation of the problem (See Chapter I, P a r t  6 ) ,  

i n  t h i s  case w e  assume t h a t  plane deformation occurs. 

t he  quant i ty  -2 as the r i g i d i t y  during def lect ion.  

Therefore, w e  may use 
EJ 

2 - v  

L e t  us study the expression obtained (11.82). It cons i s t s  of two com- 
ponents, one of which represents the l i n e a r  p a r t ,  and the  other  of which re- 
presents  a s m a l l  nonlinear pa r t .  
last  term of the  nonlinear component accounts f o r  the inf luence of t he  longi- 
t ud ina l  force arisingwhen a t ransverse load influences the angle of r o t a t i o n  
of the cross sec t ion  with the  coordinate s .  The remaining terms of the  non- 
l i n e a r  p a r t  are due t o  p rec i se  allowance f o r  curvature. 

As may b e  seen from the calculat ion,  t he  

L e t  us determine the inf luence produced by including the  longi tudinal  
force,  comparing it  with the  inf luence of including the p rec i se  value of the 
curvature. For t h i s  purpose, w e  s h a l l  f i r s t  determine the  pos i t i on  ( the co- 
ordinate  s )  of the  columns. It may be chosen by obtaining the l a r g e s t  e l e c t r i c  
s i g n a l ,  consequently, a t  the  po in t  of the maximum angle of ro t a t ion .  Assuming 
t h a t  t he  bending moment X equals zero and confining ourselves t o  the l i n e a r  2 
port ion of expression (II .82),  w e  f i nd  t h a t  s = y . I n  t h i s  case M = - and 

/I52 

C Pc 
2 

C C A' = -. 
2 L e t  us assume t h a t  = 10. Formulating the r a t i o  
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w e  then obtain 

0 - 120. 3- 

1 cs 
96 

This means t h a t  for a beam with clamped ends, 'which is loaded by a force i n  
the middle, the influence of including the ZongitudinaZ force thus arising i s  220 
times greater than the influence of inc2uding the precise va2ue of the c w a t u r e .  

The bending moment X may b e  determined by the  following expression (See 3 
Chapter I, P a r t  6) 

(11.83) 

where e is the  d is tance  from the  beam neu t r a l  axis t o  the w i r e  frame (See Figure 
50). 

L e t  us determine the  nonl inear i ty  of the e l a s t i c  element considered by way 
of example i n  P a r t  6,  Chapter I. 
following form 

Expression (11.82) may be  represented i n  the  

(s) - B,P + 0 , ~ 3 ,  

where 
el = L-2 

EJ (11.84) 

Sat isfying the Chebyshev approximation, w e  may determine the  nonl inear i ty  
coe f f i c i en t  which has the  following form, j u s t  as i n  the  case of a cant i lever  
[See formula (11.24)]: 

(11.85) 

L e t  us assume that the  e las t ic  element 

cm4; E = 2-10 kfg/cm ; V =  0.3; P = 1 kgf;  n = 4; d = 0.002 cm; [ a ]  = 

'n = y I P,,, 2 0  2 (1 + P). 
01 

L e t  us take a numerical example. 
C has the  following data:  

= 2000 kgf/cm ; X = 0.1. 

c = 1.35 cm, - = 9.93; s = 0.675 cm; e = 1 a; j = 2.09. h 6 2 

2 

Based on formulas (11.84), w e  may determine el and e2. The quan t i t i e s  /153 

M 

respect ively.  

and X3 contained i n  (11.84) may be  determined by equations (11.78) and (11.83), 0 
Performing the ca lcu la t ions ,  w e  obtain: M = 0.676 kgfcm; X3 = 2.51- 

3 0 
kgf cm; A' = 0.676 cm; el = 0.498*10-3 l /kgf ;  = 7.46*10-3 l /kgf  . 
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Formula (11.85) y i e lds  m = 0.756*10-4%. 

All t he  ca lcu la t ions  may b e  g r e a t l y  s impl i f ied  i f  w e  may disregard the  
bending moment X due t o  a s m a l l  in f luence  on the angle of ro ta t ion .  Also 3 
disregarding the  p rec i se  value of the  curvature,  w e  obtain the  following compu- 
t a t i o n a l  formulas: Pc M ---- 

0 -  7 

0' (SI ='- Q;P + .0;p3, 

where 

Using these s impl i f ied  formulas and performing ca lcu la t ions  f o r  t he  example 
given, w e  obtain m = 0.78*10-4%, i .e . ,  the nonlinemyity c o e f f i d e n t  d i f fers  from 
that obtained above by a quantity which has no practicaZ vatue. 

W e  may study the  nonl inear i ty  of an e las t ic  element i n  a similar manner i n  
order  t o  measure s m a l l  loads with e las t ic  j o i n t s .  

I n  each of t he  cases inves t iga ted  i n  t h i s  chapter,  t he  designer may employ 
the  magnitude of t he  nonl inear i ty  coe f f i c i en t  t o  determine the accuracy and, 
consequently, the  a p p l i c a b i l i t y  of t h i s  type of e las t ic  element. 

CHAPTER 111 /154 

EXPERIMENTAL DETERMINATION OF THE NONLINEARITY AND HYSTERESIS OF ELASTIC ELEMENTS 

1. Formulation of t h e  ProbleE 

The preceding chapters w e r e  devoted t o  the  theo re t i ca l  determination of 
parameters character iz ing e las t ic  elements. As i s  known, each computational 
diagram represents  an idea l i za t ion ,  which more o r  less p rec i se ly  approximates 
the  real  proper t ies  of the  object  under consideration. The l i n e a r  formulation, 
presented i n  the f i r s t  chapter,  provides an accuracy i n  the  majority of cases 
which s a t i s f i e s  p r a c t i c a l  requirements. 

For example, i t  is  not  necessary t o  take i n t o  account nonl inear i ty  when de- 
s igning e las t ic  elements f o r  s t r eng th  and r i g i d i t y  o r  when determining t h e i r  sen- 
s i t i v i t y ,  s ince  the  divergence between t h e  calculated and the experimental values 
is of no spec ia l  importance i n  t h i s  case, even i f  t h i s  divergence amounts t o  
10 - 20%. 

The s i t u a t i o n  is  d i f f e r e n t  when determining the  nonl inear i ty .  As w a s  
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mentioned above, f o r  e las t ic  tensiometr ic  elements, whose permissible  e r r o r  does 
not  exceed a f r ac t ion  of a percent ,  t he  nonl inear i ty  becomes commensurable with 
t h e  e r r o r  and i s  so  s i g n i f i c a n t  t h a t  w e  must reject even those elastic element 
arrangements whose l i n e a r i t y  causes no doubt i n  customary engineering calculat ions.  
Therefore, t he  necess i ty  arises of taking i n t o  account t he  nonl inear i ty ,  which 
is a subsequent s t ep  making the  idea l i zed  computational diagram approach the  real 
one. Nevertheless, t he  computational diagram d i f f e r s  from the  real  one, s ince  
simplifying the  hypotheses l i e  a t  the  b a s i s  of t he  ca lcu la t ion ,  and several 
important f ac to r s ,  such as hys t e re s i s ,  are very d i f f i c u l t  t o  take i n t o  account 
a t  t h e  present  t i m e .  

Due t o  t h i s  f a c t ,  an experiment must be  made t o  check t h e  t h e o r e t i c a l  re- 
s u l t s ,  as w e l l  as t o  determine the  hys te res i s .  Thus, i f  t h e  v a l i d i t y  of com- 
paring the  design f o r  s t rength  and r i g i d i t y  with experiment occasions no doubts 
f o r  t he  reasons presented above, t he  following must be  noted when comparing the  
calculated and experimental value of t he  nonl inear i ty  coe f f i c i en t  . I155 

Frequently, a s t r a i n  gauge is  at tached t o  an e las t ic  element by means of an 
Under a load, i t  i s  poss ib le  t h a t  t he  s t r a i n  gauge may undergo a 

This phenomenon increases  the  
adhesive f i l m .  
displacement wi th  respect  t o  t h e  e las t ic  element. 
nonl inear i ty .  
e las t ic  element a l s o  inf luence the  experimental value of t h e  nonl inear i ty  coef- 
f i c i e n t .  
the  p rec i se  value of the  e las t ic  l i n e  curvature,  and a l s o  f o r  the  f a c t  t h a t  t he  
forces  and moments pe r t a in  t o  a deformed state. Therefore, i t  i s  only poss ib le  
t o  compare the  experimental and t h e o r e t i c a l  values of t h e  nonl inear i ty  coe f f i c i en t  
i f  i t  i s  ce r t a in  t h a t  t he  inf luence of t he  s t r a i n  gauge displacement and imper- 
f e c t  e las t ic  proper t ies  of the  material i s  s m a l l  as compared with the  inf luence 
of f ac to r s  included i n  the  calculat ion.  

Imperfect e las t ic  proper t ies  of t h e  material used t o  make the  

The nonl inear i ty  w a s  determined i n  the  ca lcu la t ion ,  with allowance f o r  

This pe r t a ins  t o  hys te res i s .  This study inves t iga t e s  only the  experimental 
determination of hys te res i s .  

A force  measuring e las t ic  element with a s t r a i n  gauge, glued o r  mounted upon 
i t ,  i s  t e s t ed  as follows. The e las t ic  element i s  loaded by the  force  P, and the  
readings y r 
t h e  e f f e c t i v e  stress 0 a t  t h e  p lace  where t h e  s t r a i n  gauge is  glued on o r  mounted. 
For the  given device, w e  s h a l l  assume t h a t  t he re  i s  an objec t ive  Zoading c u r ~ e ,  
which does no t  depend on the  number of loads,  and an unloading curve which d i f f e r s  
from i t  (Figure 77).  This assumption corresponds t o  r e a l i t y  i f  t he  elastic. ele- 
ment i s  f i r s t  compressed. Based on t h e  experiment with f ixed  values of P ,  which 
are usual ly  assumed t o  be  spaced equal ly  apar t ,  w e  may determine several readings 
of t h e  device y f o r  which several loadings and unloadings occur. Due t o  random 

deviat ions caused by d i f f e r e n t  f ac to r s  ( a  change i n  t h e  temperature, induct ion 
i n  the  input  cable,  ind iv idua l  proper t ies  of t he  observer,  etc.) , t he  observed 
values  of y w i l l  d i f f e r  from each o ther  somewhat. 

from the  secondary device are recorded, which are proport ional  t o  

i j ’  

i j  

The experimental dependence thus obtained must be  approximated by the  method 
of least squares.  
random i n  na ture ,  and serve as estimates of t h e  unknown quan t i t i e s  character iz ing - 1156 

The approximating curve and the  parameters determining it are 
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the e last ic  element. These estimates 
can b e  of a d e f i n i t e  value only i f  t h e  
limits of the poss ib le  e r r o r  are given. 
For t h i s  purpose, i t  i s  necessary t o  
determine the  confidence i n t e r v a l ,  and 
a l s o  the  confidence probabi l i ty  (or,  
as is sa id ,  t h e  r e l i a b i l i t y ) ,  with 
which t h i s  i n t e r v a l  "covers" the  un- 
known constant nonrandom parameter. 
This problem arises i n  a s ta t i s t ica l  de- 
termination of t he  nonl inear i ty  coef- 
f i c i e n t  when there  i s  a s m a l l  number 
of experiments. 

P 

Figure 77. Loading and Unloading 
Curves of an E la s t i c  Element. 

The problem is  d i f f e r e n t  when hysteresis i s  being determined, which desig- 
na t e s  the discrepancy between the  loading and unloading curves. 

The readings obtained when an e las t ic  element i s  loaded always d i f f e r  from 
the readings obtained i n  t h e  case of unloading, due t o  the  f a c t  t h a t  they are 
random i n  nature .  Therefore, t he  curves approximating the  experimental de- 
pendences i n  the  case of loading and unloading always d i f f e r  from each other .  
Is t h i s  d i f fe rence  acc identa l ,  o r  i s  it caused by hys t e re s i s  of the  e las t ic  
element? 
ca l led  problem of ver i fy ing  t h e  

This quest ion i s  p r o b a b i l i s t i c  i n  na ture ,  and consequently t h e  so- 
s t a t i s t i c a l  hypothesis arises. 

For t h i s  purpose, l e t  us introduce a quant i ty  which obeys a c e r t a i n  d i s t r i -  

This quant i ty  i s  ca l l ed  the  veri f icat ion e r i -  
bution l a w  and which charac te r izes  the  behavior of parameters which determine 
the loading and unloading curves. 
terion. L e t  us formulate an assumption regarding the  absence of hys te res i s .  
I n  o ther  words, l e t  us introduce t h e  so-called zero hypothesbs. I n  order  t o  
ve r i fy  t h e  hypothesis,  w e  s h a l l  select a ce r t a in  level of s ign i f icance ,  i .e. ,  
a r a t h e r  s m a l l  value of t he  probabi l i ty  corresponding t o  the  d i f fe rence  i n  the  
loading and unloading curves which may be assumed t o  be  p r a c t i c a l l y  impossible 
under t h e  experimental conditions.  
us e s t a b l i s h  t h e  cr i t i ca l  region; t h e  probabi l i ty  t h a t  t h e  se lec ted  c r i t e r i o n  
follows within t h i s  region equals t h i s  level of s ignif icance.  I f  the  value of 
the  c r i t e r i o n  obtained i n  an experiment f a l l s  wi th in  the  c r i t i ca l  region, then 
consequently the  zero hypothesis does no t  correspond t o  the  ac tua l  data ,  and 
i t  must be  assumed t h a t  hys t e re s i s  occurs. 

For t h e  given level of s ign i f icance ,  l e t  

The region supplementing the  c r i t i ca l  region is  ca l l ed  the  region of per- 
missibk values. I f  the  c r i t e r i o n  t o  be  employed f a l l s  within the  region of 
permissible  values ,  i t  cannot be used t o  draw a conclusion regarding the  ab- 
sence of hys te res i s :  
of hys t e re s i s  does not  cont rad ic t  observations.  
must be  admitted, a t  least u n t i l  t he  experimental conditions are changed ( the  
number of observations increased, t he  experimental accuracy i s i n c r e a s e d ,  e t c . ) .  

i t  can only be  s t a t e d  t h a t  t he  hypothesis of t he  absence 
The v a l i d i t y  of t h i s  hypothesis 

The corroboration of t h e  hypothesis regarding the  absence of hys t e re s i s  

t o  loading and unloading, o r  t o  process them concurrently. 
means t h a t  i t  i s  not  poss ib le  t o  d is t inguish  between the  experimental da ta  
per ta in ing  
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J u s t  as when determining the confidence i n t e r v a l s ,  we  s h a l l  formulate the  veri-  
f i c a t i o n  c r i t e r i o n  on the  assumption t h a t  t h e  sample volumes are small. I f  the 
hypothesis regarding the  absence of hys t e re s i s  i s  not substant ia ted ( the  experi- 
mental value of t he  c r i t e r i o n  introduced en te r s  the c r i t i ca l  region),  w e  may 
then determine the  magnitude of the hys t e re s i s  character iz ing i t  by the coeff i -  
c i e n t ,  f o r  example, representing the  max imum value of t he  r a t i o  of t he  
between the loading and unloading curves t o  therunning value of the quant i ty  t o  
be measured. 

/157 

difference 

For the  coe f f i c i en t  thus obtained, w e  may formulate the confidence i n t e r v a l  
character iz ing the  accuracy and r e l i a b i l i t y  of determining t h i s  coeff ic ient .  

Further processing of the experimental r e s u l t s  depends on the requirements 
imposed on the  metrological propert ies  of t he  force measuring device being 
t e s t ed .  I f  an operat ional  dynanometer i s  being t e s t ed ,  and the hys t e re s i s  may 
be disregarded (due t o  i t s  smallness, as compared with the  permissible e r r o r ) ,  
then w e  cannot dis t inguish between the data  obtained during loading and unloading. 

I f  t he  requirements on the accuracy of the device are high -- f o r  example, 
i n  t he  case of a standard dynanometer -- then the data  per ta ining t o  t h e  loading 
and unloading curves must be processed separately.  
ployed, t he  ca l ib ra t ion  da ta  per ta ining t o  loading and unloading must be u t i l i z e d  
separately i n  the corresponding cases. 

When a dynanometer is em- 

I n  conclusion, w e  should note  t h a t  t he  apparatus employed t o  determine the 
nonl inear i ty  and hys t e re s i s  represents  a secondary device -- i .e.,  i n  essence w e  
are dealing with a tensometric fo rce  measuring device. Therefore, t he  deter- 
mination of nonl inear i ty  and hys t e re s i s  i s  always accompanied by ca l ib ra t ion  of 
the device, and consequently w e  may determine i t s  accuracy. An examination of 
the metrological propert ies  of tensometric force measuring devices f a l l s  out- 
s i d e  the  framework of t h i s  study. However, due t o  the f a c t  t h a t  there  i s  a 
close r e l a t ionsh ip  between the determination of the metrological propert ies  of 
the device and the processing of the experimental data ,  t o  conclude t h i s  chapter 
w e  s h a l l  b r i e f l y  discuss the problem of t h e  accuracy of force measuring devices. 

2. Smoothing Out the Experimental Data 

The purpose of t he  experiment is t o  obtain the .  dependence between the reading 
of t he  secondary device and the force applied t o  the e l a s t i c  element. 
perimental points  obtained have random deviations from the general  pa t t e rn ,  which 
are caused by e r r o r s  which are unavoidable i n  every experiment. 
out these experimental data  by the  method of least  squares. 

The ex- 

W e  s h a l l  smooth 

L e t  us introduce the  notation. For purposes of convenience, w e  s h a l l  em- /158 
ploy the  letter x* t o  designate the  independent var iable ,  which is  the  force P .  
The readings of t he  secondary device, which may have dimensionality d i f f e r i n g  
from the force dimensionality, are designated by t h e  letter y. Loading and m- 
loading - is  - performed . when the device is  tes ted.  Thus, f o r  each of the values 

*The f a c t  t h a t  this notat ion w a s  employed above f o r  ' the longitudinal axis  of 
the  beam should not  lead t o  any confusion. 
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of the  independent va r i ab le  x = xi ( i  = 1, 2, 3, ..., n) ,  which are usual ly  

assumed t o  be spaced equally apa r t ,  w e  repeat the observations k t i m e s ,  as a 

r e s u l t  of which w e  obtain c e r t a i n  readings of the secondary device y where 

the index j designates the experiment number. 

i 

i j  ' 

Select ing the functions 0 (XI,  +2 (XI,  ..., $1 ( 4 ,  we  may w r i t e  the  de- l 
pendence between t h e  observed quant i ty  y and the  independent var iable  x as 
follows : I 

y = 2 aqcqq (4, 
q= 1 

where a are the  unknown parameters t o  be determined. 
q 

The observed values of y contain measurement e r r o r s  6 i j  i j '  
I 

Yij  = 2 aq' ( ~ q  (xi)  + ' i j .  
q= 1 

(111.1) 

(111.2) 

Assuming t h a t  t he  measurements are not equally accurate i n  the general  case, 
l e t  us pos tu l a t e  the following assumptions regarding the random q u a n t i t i e s  6 .. 

i j  
1. The mathematical expectation * ' o f  t he  quant i ty  6 * i j '  

Mai j  = 0. 

2. I n  accordance with the  assumption t h a t  the measurements are not equally 
accurate ,  the 

3. For 
other  . 

dispersion of the quant i ty  6 is  a c e r t a i n  function of x i j  

DEij = a2 (x i ) .  
d i f f e r e n t  values of xi, t he  e r r o r s  6 are independent of each i j  

4. For each value of x t h e  q u a n t i t i e s  6 obey the  normal d i s t r i b u t i o n  i' i j  
l a w  with the  center  a t  zero and the dispers ion a2 (x . ) ,  as follows from the  

1 
assumptions advanced above. 

Frequently, these assumptions closely coincide with p rac t i ce ,  although 
sometimes the re  is  a c e r t a i n  divergence. However, they simplify the so lu t ion  
of the problem s o  much t h a t  t h e i r  introduct ion i s  j u s t i f i e d .  
may always be w r i t t e n  i n  the following form, with a s u f f i c i e n t  degree of accu- 
racy 

The quant i ty  a(xi) 

a (-vi) == gcg (*vi)) (111.3) 

where the functions g(x) are se l ec t ed  s o  t h a t  t he  dependence (111.3) closely 
approximates the e f f e c t i v e  change i n  the quant i ty  a (x) . 

- - -~ -~ ~- * For the b a s i c  concepts of t h e  theory of p robab i l i t y ,  see, f o r  example, the 
study (Ref. 3) .  
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The hypothesis t h a t  t he  dependence (111.3) corresponds t o  the real form of /159 
the  curve rs = rs(x) is  checked by the  method given i n  (Ref. 3 ) .  

Everywhere below w e  s h a l l  assume t h a t  t he  function g(x) is known. L e t  us 
formulate the function 

(111.4) 
q= 1 

.The parameters a represent estimates of t he  unknown q u a n t i t i e s  of equa- 

t i o n  (111.1). W e  s h a l l  assume t h a t  f o r  each value of x a number of measure- 

ments i s  made, equal l ing k 

the  quant i ty  p = 

9 
i 

which i s  d i f f e r e n t  f o r  d i f f e r e n t  xi. I f  w e  use i’ 
as the  weight, on the b a s i s  of the method of least 1 

i 2  
0 (Xi> 

squares i t  i s  necessary t h a t  the following quant i ty  be minimal 

i = I  j = l  q- 1 

where n is the number of reference points .  

(111.5) 

The following system of equations is the  condition f o r  the minimum of t h i s  
expression: 

-- au -0,  - ( p = 1 , 2 , . * . , l ) ,  
8% 

o r  i n  expanded form 

Solving t h i s  system of equations, w e  f i nd  the coe f f i c i en t s  a . I f  the 

functions se l ec t ed  $J ( x . ) ,  (q = 1, 2 ,  ..., 2) represent an orthogonal system f o r  

the s e t  of values of the argument x 1, x2, ..., x 
system of equations (111.6) i s  considerably s implif ied,  s ince  i t  decomposes i n t o  
individual  equations. 
f a c t  t h a t  f o r  any values of q # p w e  have 

q 

q 1  
then the so lu t ion  of the n’ 

I n  our case, the orthogonality condition consis ts  of the 

n 

(111.7) 

I n  t h i s  expression, the dependence (111.3) is taken i n t o  account. I f  the 
measurements are equally accurate,  i .e . ,  ki = k const,  02(xi) = 02 = const,  

then equation (111.7) may be s implif ied as follows 

(111.8) 

1 4  7 



I f  the functions chosen 4 (x) are not  orthogonal, they m u s t  be f i r s t  or- 1160 
q 

thogonalized. The r u l e  governing the  orthogonalization w i l l  be i l l u s t r a t e d  
below with a s p e c i f i c  example. Therefore, w e  s h a l l  everywhere assume t h a t  t he  
functions 4 (x) represent  an orthogonal system. 

9 
W e  obtain the  following from equations (111.6), employing the condition of 

orthogonality (111.7) and the  r e l a t ionsh ip  (111.3) 
n 
1 ki - 

P n s (111.9) 
i= I a =  

(xi) 
i= 1 

where the  following no ta t ion  is assumed f o r  the average value of y: 

(111.10) 

I n  the case 
following form 

of equally accurate measurements, equation (111.9) assumes the 

(111.11) 

The quant i ty  a determined according t o  the  given s m a l l  sample i s  a random 
quant i ty  which ch&es from experiment t o  experiment. 
t o  employ the  confidence i n t e r v a l  t o  character ize  both the possible  e r r o r  i n  
determining the unknown quant i ty  a and the r e l i a b i l i t y  of t h i s  determination. 

Therefore, i t  is  necessary 

P’  
Any confidence i n t e r v a l  i s  found from the  condition expressing the pro- 

b a b i l i t y  of s a t i s f y i n g  a c e r t a i n  inequal i ty .  
t o  f ind  the  value E > 0 f o r  which t h e  p robab i l i t y  of the inequal i ty  

I n  the given case, it i s  necessary 

ap - -E  < a p  < ap + E  

equals A. Customarily, t h i s  condition is w r i t t e n  i n  the following form: 

~ ( n  - z < a p < n p + e )  ==y.  
P 

The p robab i l i t y  X character iz ing the r e l i a b i l i t y  of the determination i s  
ca l l ed  the  confidence p robab i l i t y ,  and the i n t e r v a l  (a - E ,  a + E )  is ca l l ed  

the confidence i n t e r v a l .  
P P 

The l a w  governing the d i s t r i b u t i o n  of the quant i ty  a which represents  /161 P’  
an estimate of the coe f f i c i en t  ci depends on the unknown parameters of 6 and, 

i n  p a r t i c u l a r ,  on the standard deviat ion cr, which may be determined roughly with 
a s m a l l  number of experimental points .  Therefore, w e  m u s t  change from a t o  the 

P’ 

P 
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c r i t e r i o n  w h i c h  would depend only on the number of observations 
n 

and on the  form of the d i s t r i b u t i o n  l a w  6 .  L e t  us f ind  t h i s  c r i t e r ion .  L e t  
us add equations -(111.6) and l e t  us sub t r ac t  t he  quant i ty  C a Cp (x.)from them. 

q=1q 4 

Employing expression (111.2) and the  orthogonality condition (111.7), w e  obtain 
k ,  

(111.12) 

i= 1 

where the  function g(x) i s  assumed t o  be unknown, just as previously. 

The difference a - a  represents  a l i n e a r  combination of the quan t i t i e s  
P P  2 

6 d i s t r i b u t e d  normally with the  center  a t  zero and the  dispersion u (xi). 

t he  b a s i s  of t he  w e l l  known laws f o r  the l i n e a r  transformation of random, 
s t a t i c a l l y  independent q u a n t i t i e s ,  we  f i nd  t h a t  the quant i ty  a - a  has nor- 

m a l  d i s t r i b u t i o n  with the mathematical expectation 

On 
i j  

P P  

and the dispersion 

M (ap - ap)  = 0 

(111.13) 

Normallizing a - a  w e  a r i v e  at the random quant i ty  
-. P P '  

(111.14) 

which s a t i s f i e s  t he  normal d i s t r i b u t i o n  l a w  with the center  a t  zero and disper- 
s ion  equaling unity.  

L e t  us f ind  the d i s t r i b u t i o n  l a w  f o r  the quant i ty  

J u s t  as previously,  taking i n t o  account t h e  
not equally accurate,  w e  introduce the weight 

q=. I 

f a c t  t h a t  the measurements are1162 
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J u s t  as above, making i d e n t i c a l  transformations i n  the r i g h t  hand s i d e  of 
t h i s  expression, w e  obtain 

(111.15) 

I f  allowance i s  made f o r  expression (111.14), as w e l l  as the assumptions 
advanced regarding 6,,, i t  may be readi ly  seen t h a t  t he  f i r s t  and second com- 

ponents i n  the 
the  squares of 
equaling zero, 

According 

J-J 
r i g h t  hand s i d e  of the  equation (111.15) cons i s t  of t he  sums of 
normally d i s t r i b u t e d  q u a n t i t i e s  with a mathematical expectation 
and a dispers ion equaling unity.  

t o  a w e l l  known theorem, the  quant i ty  
n 

x 2  = 2 z ; ,  
i = 1  

where the s t a t i s t i c a l l y  independent q u a n t i t i e s  

normally with t h e  parameters 0 and 1, obeys the so-called X2-distribution with k 
degrees of freedom ( i n  terms of t h e  number of components), having the  p robab i l i t y  
density : 

zl, z2¶ ..., % are d i s t r i b u t e d  

k 
2 

s ion  (111.15) has 
freedom 

where r - is  the tabulated gamma-function. 

On the b a s i s  of t h i s  theorem, the quant i ty  i n  the l e f t  hand s i d e  of expres- 
X2-distribution with the following number of degress of 

n 
1 

i =  1 
k = 2 ki - 1. 

I n  order t o  obtain the c r i t e r i o n  which w e  need, l e t  us employ the  following 
theorem (Ref. 3 ) .  

I f  the random quant i ty  t represents the s p e c i a l  quant i ty  

-- where z has a normal d i s t r i b u t i o n  with the center  a t  zero and dispers ion 
equaling unity;  v i s  a y a n t i t y  which does no t  depend on z;  and v2 is  d i s t r i -  
buted according t o  t h e x  law. with k degrees of freedom -- then t h i s  quant i ty  
obeys the so-called Student d i s t r i b u t i o n  l a w  with k degrees of freedom, having 
the following d i s t r i b u t i o n  density 

1163 
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The form of t h i s  d i s t r i b u t i o n  l a w  i s  shown i n  Figure 78. where the  normal 
l a w  is a l s o  given, f o r  purposes of comparison. 
mental points  is g r e a t e r  than 13, the curves barely d i f f e r  from each other.  

There are t ab le s  of the Student d i s t r i b u t i o n  function f o r  k degrees of 

When ';he t o t a l  number of experi- 

freedom 
t 

sk ( t )  = s, (u )  du. 
-m 

Employing t h i s  theorem, on the bas i s  of expressions (111.14), ( I I I .15) ,  and 
(111.3) w e  obtain the  following value f o r  the c r i t e r i o n :  

(a, - 

f =  4 

which obeys the Student d i s t r i b u t i o n  l a w  with the number of degrees of freedom 
I1 

Z k i  - 1. 
i= 1 

Employing the c r i t e r i o n  t w e  may 
q'  

Figure 78. Student D i s t r ibu t ion  
Curve. 

r ead i ly  formulate the  confidence i n t e r -  
val f o r  the parameter 01 character iz ing 

the accuracy and the  r e l i a b i l i t y  with 
which t h i s  quant i ty  is determined. L e t  
us assume t h a t  the p robab i l i t y  of the 
inequa l i ty  

4 

--t, < t ,  < -t- 4 (111.17) 

equalsy , i .e.,  

p ( 4 1  .= t,I < + t,) = y. (111.18) 

There are t ab le s  f o r  t he  dependence of t on the  p robab i l i t y  y and on the 

number of degrees of freedom. Somet imes  t he  term r = 1 - y is  employed, instead 
of y. I n  t h i s  case, the  boundaries of the i n t e r v a l  (111.17) are ca l l ed  the  r - 
percen t i l e  limits f o r  t . When formulating the confidence i n t e r v a l ,  w e  should note 

/164 
Y 

q 
t h a t  inequal i ty  (111.17) is  equivalent t o  inequa l i ty  

aq - /Isq < a, < aq + f,sq, (111.19) 
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where 

Inequality (111.19) determines t h e  confidence i n t e r v a l ,  and y i s  the con- 
fidence probabi l i ty .  I n  the  case of equally accurate  measurements, w e  have 

The calculat ion i s  performed as follows. L e t  us define the l a rge  n robab i l i t y  
y (or t he  probabi l i ty  r ,  depending on the  manner i n  which the t ab le s  are formulated) 

and l e t  us employ the  t ab le s  t o  determine t h e  quant i ty  t 

freedom. By calculat ing s w e  may determine the  confidence i n t e r v a l ,  based on 

formula (111.19) , which w i l l  character ize  the possible  e r r o r  en ta i l ed  i n  deter-  
mining the parameter a. 

n 
f o r  Cki - 1 degrees of 

Y i=l 

q' 

with t h e  r e l i a b i l i t y  y.  
4' 

It w a s  indicated above t h a t ,  i n  order t o  approximate the  experimental 
dependence using the method of least  squares, i t  is necessary t o  select the sys- 
t e m  of functions r$ (x),  where q = 1, 2 ,  ..., 2 ,  which must be orthogonal f o r  the 

4 
set  of values of the arguments X1,x2, 

t i o n s  is not orthogonal, i t  must be orthogonalized. 
cess is as follows. 

X I f  the se l ec t ed  system of func- 

The orthogonalization pro- 
n' 

L e t  us assume t h a t  w e  select the  system of functions $ (x),  $2(x) ,  ..., $,(x), 1 
which is not orthogonal. L e t  us orthogonalize t h i s  system. W e  s h a l l  assume the  
following as t h e  f i r s t  function 

'PI (4 = 91 ( 4 7  

and w e  s h a l l  assume the  following l i n e a r  combination of t he  f i r s t  two as the  
second function 

ps ( ) --= q2 (x) -1 -  111*)1 (x). 

W e  may determine the coe f f i c i en t  b 

the functions $,(x) and $2(x). 

(111.7) 

from the orthogonality condition of 1165 1 
W e  obtain the  following on the b a s i s  of equation 
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, 
from w h i c h  w e  have 

(111.21) 

Continuing the- orthogonalization process, w e  assume the following as the  
t h i r d  function 

I n  order t o  determine the coe f f i c i en t s  b2 and b3, t h e  function +,(X) m u s t  

be  orthogonal t o  the  functions +,(x) and +2(x). 

t he  functions +,(XI and +,(XI y i e l d s  

The orthogonality Condition Of 

(111.22) 

i= 1 

and w e  obtain the  following from the orthogonality condition of t he  functions 
+,(XI and +,(XI 

(111.23) 

W e  s h a l l  select the  l i n e a r  combination of t he  f i r s t  four  as the fourth 
function, and w e  s h a l l  require  t h a t  i t  be orthogonal t o  the  th ree  functions ob- 
tained. I n  a s i m i l a r  way, w e  may determine the  f i f t h  function. The process is 
thus continued u n t i l  t he  e n t i r e  s e l ec t ed  system of functions is  orthogonalized. 

I n  the case of equally accurate measurements , formulas (111.21) , (111.23) 1166 
are s implif ied as follows: 

n R \ 

(111.24) 
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The e l a s t i c  tensometric elements under consideration are characterized by 
the  f a c t  t h a t  they have very poor nonl inear i ty ,  due t o  high metrological pro- 
p e r t i e s .  Therefore, a polynomial i s  always se l ec t ed  as the .approximating function, 
and polynomials of the second and t h i r d  degree are the most important i n  p rac t i ce .  

L e t  us der ive the formulas f o r  these two cases. I n  the f i r s t  case, w e  s h a l l  
assume t h e  system of functions x,x2, taking the f a c t  i n t o  account t h a t  t he  curve 

t h e  following as the f i r s t  function 
. must always pass through the or igin.  Orthogonalizing t h i s  system, w e  s h a l l  select 

(111.25) y1 (.) = x, 

and the  following as the  second function 

72 (.) == X' -J- 6 1 ~ .  

Based on formula (111.21) w e  obtain 

(111.26) 

(111.27) 

If a parabol ic  approximation is  i n s u f f i c i e n t ,  w e  s h a l l  add the function 
J13(x) = x3 and, formulating the l i n e a r  combination of t h i s  function with the 

(111.28) 

The coe f f i c i en t s  b2 and b3 may be determined from formulas (111.22) and 

I 1 6 7  - (111.23) : 

k, -- - 
3 -  

Thus, i n  the  approximation of a polynomial of the second degree, w e  must 
employ the system of functions (111.25) and (111.26), and the coe f f i c i en t  bl 

i s  determined from formula (111.27). 
w e  must add the function (111.28) t o  the functions (111.25) and (111.26), and 
t o  determine the coe f f i c i en t s  b and b we must employ formulas (111.29). 

For a polynomial of the t h i r d  degree, 

2 3 

I f  the approximation of a polynomial of the t h i r d  degree i s  unsat isfactory,  
The agreement between the experi- we  must employ a polynomial of higher degree. 

mental dependence and the approximating curve i s  very important, s ince  the  form 
of the  t h e o r e t i c a l  curve may be used t o  determine the propert ies  of an elastic 

tensometric element and i t s  s u i t a b l e  appl icat ion i n  a device being designed. 
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I n  the  s implest  case, when the re  is no necessi ty  of solving t h i s  problem 
prec ise ly  -- f o r  example, i n  a preliminary determination of t he  closeness be- 
tween the  experimental and theo re t i ca l  curves -- i t  may be  assumed t h a t  t he  
approximation is  unsa t i s fac tory  i f  t he  scatter of the  experimental po in ts  i s  
approximately symmetrical with respec t  t o  the  smoothed curve. 

For a p rec i se  so lu t ion  of t h i s  problem, i t  is  necessary t o  introduce the 
criterion characterizing the cZoseness between the experimentai! and theoretica2 
reZationships, whose magnitude could be  used t o  determine whether t he  se lec ted  
approximating curve i s  sa t i s f ac to ry .  

L e t  us der ive t h e  theorem which may be  used t o  obta in  such a c r i t e r i o n .  
L e t  us assume t h a t  U and V are independent random quan t i t i e s ,  each of which 
i s  d i s t r ibu ted  according t o  the  x 2  l a w  with the  degrees of freedom kl and k2, 

respect ively.  It may be  s t a t e d  t h a t  t he  following quant i ty  

has the  so-called F-dis t r ibut ion,  which has the  following probabi l i ty  den- 
s i t y  

Figure 79 presents  a graph giving t h e  probabi l i ty  densi ty  of the  F-dis t r i -  /168 
bution. L e t  us i nves t iga t e  the  quant i ty  

where the  values Y and f are determined by formulas (111.4) and (111. lo), 
respect ively,  and the  arithmetic mean 6 .  has the  following form 

c i i 

1 

‘See H. Reisser. Ingenier-Archiv., N o .  1, 1929. 
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The l e f t  hand s i d e  of expression 
(111.30) has the  X2-distribution with 
(n - 2) degrees of freedom. 

L e t  us assume the  following as t h e  
second quant i ty  

Figure 79. Curve of t he  F-Distribution. 
(111.31) 

n 
i i= 1 

which has X2-distribution with Ck 

theorem given above and dependence (111.3) , the  quant i ty  

- n degrees of freedom. On the  bas i s  of t he  

n 

- . _  - 
I1 - 1 

(111.32) 

n 
has  t h e  F-dis t r ibut ion with n - 1 and Cki - n degrees of freedom. The F c r i t e r i o n  

j =1 

obtained makes i t  poss ib le  t o  determine the  closeness of the  experimental and 
t h e o r e t i c a l  curves. 

The discussions,  which provided the  b a s i s  f o r  determining the  l a w s  governing 1169 
t h e  d i s t r i b u t i o n  of quan t i t i e s  determined by expressions (111.31) and (111.32) , 
are only va l id  i f  t h e  t h e o r e t i c a l  curve d i f f e r s  t o  an in s ign i f i can t  ex ten t  ( fo r  
t he  given experimental condi t ions)  from the  experimental re la t ionship .  Thus, 
t he  so-called zero hypothesis i s  employed when der iving the  F c r i t e r i o n ,  i .e . ,  
t he  hypothesis regarding the  agreement between the  experimental and approxi- 
mating re la t ionships .  
i s  se lec ted ,  and the  following two i n t e r v a l s  are assumed as t h i s  region: 

I n  order t o  confirm t h i s  hypothesis,  t he  cri t icaz  region 

0 < I.'< F,; 

F >  F,. 

This region corresponds t o  the  cross  hatched areas i n  Figure 79. A s u f f i -  
c i en t ly  s m a l l  value of t he  probabi l i ty  ( the  so-called level of significance) is  
then se l ec t ed ,  which determines the  c r i t i ca l  poin ts  F and F2,  and w e  have 1 

P(F> =: 2 and P ( F <  F J  L. 2 
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The level of s ign i f icance  r is assumed so  t h a t  i t  is  p r a c t i c a l l y  impossible 
t o  en te r  the c r i t i ca l  region. 
t he  s p e c i f i c  conditions of the problem. Customarily, t h e  level of s ign i f icance  
i s  1 o r  5%, and sometimes 10%. There are tab les  of t he  r - percen t i l e  r i g h t  
c r i t i ca l  poin ts  F f o r  t he  F-distribution. 

termined by t h e  f a c t  t h a t  i t  equals t h e  r i g h t  c r i t i ca l  poin t  of t h e  F'-distribu- 

The s e l e c t i o n  of this quant i ty  i s  determined by 

The l e f t  c r i t i ca l  poin t  F1 is de- 2 

I t i o n ,  where F' - - - F' 
The quant i ty  F may then be  determined from the  experimental data.  I f ,  t h e  

experimental value of t he  c r i t e r i o n  F f a l l s  wi th in  the  c r i t i ca l  region thus sel- 
ected,  i t  i s  then apparent t h a t  t he  form of the  approximating curve employed i s  
unsa t i s fac tory ,  and subsequent terms of higher  order  are added t o  the  chosen 
system of functions.  

L e t  us give a numerical example. Three loads are applied and, respec t ive ly ,  
th ree  unloadings of an e las t ic  tensometric element, represent ing a column with 
s t r a i n  gauges glued onto it. 
during the  loading a t  i n t e r v a l s  of 2000 kgf. Thus, f o r  each value of the  load 
x three  readings of the  secondary device are obtained, corresponding t o  the  

loading curve, and three  readings of t he  secondary device are obtained corres- 
ponding t o  the  unloading curve (Table 2). 

The readings of the  secondary device are recorded 

i' 

W e  s h a l l  process the  da t a  per ta in ing  t o  t h e  loading and the  unloading sepa- 
r a t e ly .  
s h a l l  determine the  orthogonal functions,  assuming t h a t  t he  polynomial of the  
t h i r d  degree passing through t h e  o r i g i n  i s  the  approximating function. Ortho- 
gonalizing our system, w e  s h a l l  employ the  functions i n  the  form of expressions 
(111.25), (111.26) and (111.28). W e  can determine the  coe f f i c i en t s  bl, b2 and b 

from formulas (111.27) and (111.29). Taking the  f a c t  i n t o  account t h a t  the  mea-  
surements are equal ly  cor rec t  i n  our case, and ki = 3 = const,  w e  obtain 

W e  s h a l l  f i r s t  i nves t iga t e  the  readings per ta in ing  t o  t h e  ioading, and /170 

3 

5 

_ -  1 4,3 4 79 ; 13 4'10 
996, 722 

_ .  ~- -- 

15 664 
220 

. -  = -71,2. 

i - l  
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TABLE 2 . . 

. . . .  
Loadin Readings of t he  Secondary Device 
i n  kgf Loading -. Unloading .~. - Loading - - .  . Unlo.ading Loading 

0 0 0 0 0 0 
2,000 10,043 10,038 10,043 10,048 10,038 
4,000 20,092 20,082 20,082 20,077 20,087 
6,000 30,150 30,140 30 , 145 30 , 130 30 , 145 
8,000 40,200 40,200 40 , 205 40 , 200 40 , 210 

10,000 50,240 50,240 50 , 240 50 , 240 50,250 

Thus , w e  obtain the  following orthogonal system of funct ions 
~. - . . =  ~ . . ~ _ _ _ ~  

(x) = x; 

y a ( x )  : XZ--8,IQIS2. x; 

Unloading . . ~  

0 
10,033 
20,077 
30 , 135 
40 , 180 
50 , 250 

‘?S(X) = .u3- 1zI,3479(.~2 - -S ,18182~)-7J ,2~  = 

2- 1~1,3479.~~ -1- 4G,1919~. 

1, a2, and a from formula (111.21). 1171 W e  may ca l cu la t e  t h e  coe f f i c i en t s  a 

I n  order  t o  draw a d i s t i n c t i o n  between the  coe f f i c i en t s  per ta in ing  t o  the  loading 
and unloading, l e t  us employ the  addi t iona l  index 1 f o r  t he  f i r s t  ones, and the  
index 2 f o r  t he  second ones: 

3 

5 

i= I 

5 

(111.33) 

Final ly ,  the  equation which represents  t he  loading curve t o  the  b e s t  ex ten t  
has the  following form 

Yl = 5 0 2 4 , 5 ~  4- 0,2435 ( 2 - 8 , 1 8 1 8 2 ~ ) -  

-0 ,1839(~3-  14-,3479x2 -+ 46,1919~) = 

= 501 4 , 1 2 ~  $- 2,852 1x2 - 0 , 1 8 3 9 ~ ~ .  

(111.34) 

The coe f f i c i en t s  a a21, a31, representing the  determination of the  un- 11 , 
known coe f f i c i en t s  all ,  a.21, a are random quan t i t i e s ,  s ince  they are obtained 31’ 
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on t h e  bas i s  of a l imi ted  nwnber of experimental points .  
t a b l i s h  the accuracy and r e l i a b i l i t y  with which these coef f ic ien ts  are determined. 
A s  may be  seen from expression (III .19) ,  w e  must determine the  quant i ty  s . Taking 

i n t o  account t he  equal measurement accuracy, as w e l l  as t h e  f a c t  t h a t  qi = const = 

= 3, w e  obtain 

Therefore, w e  must es- 

9 

W e  ob ta in  the  following from the  t ab le  of r -percent i le  limits f o r  t h e  /172 
Student d i s t r i b u t i o n  (Ref. 3 ) ,  s e t t i n g  r = 5%, f o r  twelve degrees of freedom 

f = 2,179. 7 

On the  bas i s  of inequal i ty  (111.19), w e  obtain 

5024,5 - 2,179 . 0,193 < glI < 5024,s 1- 2,179 . 0,193. 

F ina l ly ,  t he  95% confidence i n t e r v a l  f o r  the quant i ty  a is  
(111.35) 11 

5024,08 < oll < 5024,92. 

The meaning of t he  confidence i n t e r v a l  obtained is  as follows: w e  know the  
p rec i se  value of the nonrandom quant i ty  a. However, this quant i ty  l ies  wi th in  11' 
the  i n t e r v a l  (111.35) with a probabi l i ty  of 0.95. For fu r the r  ca lcu la t ions ,  in- 
s tead of t he  quant i ty  a w e  s h a l l  employ i t s  estimate determined by the  f i r s t  

of expressions (111.33). 
11' 

I n  a s i m i l a r  way, w e  may determine the  confidence i n t e r v a l s  f o r  the  constants  
0,04 < oZ1 < 0,45; 

- 0,274 < ccSl < 0,0939. 

cxZ1 and ~ 1 ~ ~ :  

W e  s h a l l  no t  process the  experimental da ta  per ta in ing  t o  t h e  unloading curve. 
The f i n a l  r e s u l t s  have the  following form 

aI2 = 5023,G; = 0,6031; n,, == - 0,086; 
5023 < oI2 < 5024,2; 

0,3 < oa2 < 0,908; 
-0,1957 < a3, < 0,048. 

The functions $l(x),  $,(x), and 0 (x) remain as before.  The unloading curve 3 
may be  described by t h e  re la t ionship  

Y, = 5 0 1 4 , 7 ~ +  1,837~2-0~08G.~~.  
(111.36) 

It may be  seen t h a t  comparing the  expressions (111.34) and (111.36) t h a t  
t h e  unloading and t h e  loading curves d i f f e r  from each o ther  t o  a c e r t a i n  extent .  
A subsequent chapter w i l l  be devoted t o  the  problem of whether t h i s  d i f fe rence  
is  only a random phenomenon of t h e  experiment, o r  whether i t  has a d e f i n i t e  cause. 
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O n  t h e  b a s i s  of t he  approximating curves obtained above, we  s h a l l  determine 
whether i t  is  necessary t o  take hys t e re s i s  i n t o  account i n  the example under con- 
s idera t ion .  Natural ly ,  t he  approximating curves m u s t  be  c lose  t o  the  experimental 
re la t ionships  with s u f f i c i e n t  accuracy during loading and unloading. 

The F c r i t e r i o n  f o r  ver i fy ing  the  agreement between the  theo re t i ca l  and 
experimental re la t ionships ,  determined by formula (111.32), assumes the  following 
form f o r  equally accurate  measurements 

I 1 7 3  

(111.37) 

and has a F-dis t r ibut ion wi th  n - and nk - n degrees of freedom. 

For our numerical example, t he  experimental value of the  F c r i t e r i o n  f o r  t he  
da ta  per ta in ing  t o  loading i s  as follows, based on formula (111.37) 

31,s 3 .  ( 3 .  5-5) F =  -. . . - = 2,38. 
200,G 5-3 

r 
2 Based on the  t a b l e  of -percent i le  r i g h t  c r i t i ca l  poin ts  i n  the  case of 

2 and 10 degrees of freedom, f o r  a 10 percent  level of s ign i f icance  w e  ob ta in  
F 

probabi l i ty  w a s  used as the  b a s i s  above, when formulating the  confidence in t e r -  
val  f o r  the numerical example. I n  t h i s  case,  i n  order  t o  determine the  r i g h t  
c r i t i c a l  point  f o r  a 5 percent level of s ign i f icance ,  w e  could r e s o r t  t o  l i n e a r  
in te rpola t ion .  However, t he re  i s  no necess i ty  of t h i s ,  s ince  the  experimental 
value of the  F c r i t e r i o n  f a l l s  wi th in  the  region of permissible  values,  not  only 
i n  the  case of a 2 percent  l e v e l  of s ign i f icance ,  bu t  a l so  f o r  a 10 percent  l eve l  
of s ign i f icance .  

= 4.1,  and f o r  a 2 percent  level of s ign i f icance  w e  obtain F = 7.56. A 5 percent  2 2 

rhus, the hypothesis regarding the agreement betueen the qproscimating and 
experimentaZ Te Zationships has been corroborated. 

A s i m i l a r  conclusion may be  reached regarding the  approximating curve f o r  
t he  experimental po in ts  during unloading. The experimental value of t he  cri- 
t e r i o n  F = 1 . 4 2 ,  corresponding t o  t h i s  case, a l s o  f a l l s  within t h e  region of 
p e r m i s s i b l e  values.  

3. Determination of. Hysteresis  

The presence of hys t e re s i s  reduces the  metrological  proper t ies  of a force  
measuring device. The construct ion of an e las t ic  element and the  mater ia l  from 
which i t  is  made must provide minimum hys te re s i s  which does not  exceed a per- 
miss ib le  value. Therefore, when t e s t i n g  new types of e las t ic  elements, i t  i s  
necessary t o  determine the  hys t e re s i s  which i s  one of the  causes of systematic  
e r ro r s  i n  the  readings of the  device. However, t h i s  i s  complicated by the  f a c t  
t h a t  t he  curves , which "smooth" the  experimental dependences during unloading 
and loading, always d i f f e r  from each other ,  s ince  the  coef f ic ien ts  a 
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a (q = 1, 2, . . . , Z)are random quant i t ies .  I n  pa r t i cu la r ,  t h i s  w a s  the  case 

with the numerical example Invest igated i n  the  preceding sec t ion ,  and the re  w a s  
a s ignif icant :  d i f fe rence  between t h e  coef f ic ien ts  i n  the  case of nonl inear  terms. 

q2 , 

Consequently, w e  must solve the  problem of whether t h i s  difference may be 
expZained by random phemenu  is so great that  
it can onZy be caused by an unavoidabZe random scatter of the readings. I f  t he  
d i f fe rence  is s ign i f i can t ,  i t  may be concluded t h a t  hys t e re s i s  is present ,  i .e.,  
t he  d i f fe rence  i s  not  caused by a random phenomenon. This conclusion i s  pro- 
b a b i l i s  t i c  i n  nature.  

of the experiment or whether it 

L e t  us obtain t h e  c r i t e r i o n  which may be used t o  determine the  presence o r  
absence of hys te res i s .  L e t  us i nves t iga t e  t h e  d i f fe rence  between two normally 
d i s t r ibu ted  quan t i t i e s  (a  

t he  index 1 ind ica t e s  t h a t  the  quant i ty  pe r t a ins  t o  the  loading curve, and t h e  
index 2 pe r t a ins  t o  the  unloading curve. The d i s t r i b u t i o n  center  l i e s  a t  zero. 
Based on expression (111.13) and the  theorem regarding t h e  dispers ion of t h e  sum 
of independent random quan t i t i e s ,  the  dispers ion equals 

- a  ) - (aq2 - a ), i n  which -- j u s t  as previously -- 
q l  q l  q 2  

D [(a41 - aqd - (a,. -- a,Jl = 
r- 1 

(111.38) 

This expression i s  w r i t t e n  under the  very general  assumption t h a t ,  i n  the  
loading and unloading process,  t he  instrument readings are recorded f o r  d i f fe -  
r en t  values of the  independent va r i ab le  x ,  and t h a t  the  readings w e r e  recorded 
a d i f f e r e n t  number of t i m e s  f o r  each value of x. However, i n  p rac t i ce  tests are 
not  made i n  t h i s  way. Therefore, w e  s h a l l  assume everywhere below t h a t  i n  the  
loading and unloading process the  readings a r e  recorded f o r  one and the  same 
values of x,  and f o r  each value of x the  number of experimental po in ts  k 

i n  the  case o f  loading is the  same as  the  number of experimental points  ks i n  

the  case of unloading. 

i r 

W e  thus have 
x, - -  ,u, : .vi; 
k, 7 k, x 12,; 
tL1 = n,  -1 t l .  

Thus , expression (111.38) acquires  t h e  following form 
\. 

from which i t  d i r e c t l y  follows t h a t  the quant i ty  

(111.39) 

/175 - 

(111.40) 
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has a normal d i s t r i b u t i o n  with the parameters 0 and 1. 

L e t  us formulate the  following quant i ty:  

2 n 

4= 1 

It represents  t h e  sum of the  squares of 2 random q u a n t i t i e s  which have nor- 
m a l  d i s t r i b u t i o n  with t h e  center  a t  zero and dispers ion equaling unity.  
quently,  based on the  theorem presented above, i t  has ~ 2 -  d i s t r i b u t i o n  with 2 
degrees of freedom. 
formula (111.15), the  quant i ty  

Conse- 

On the  b a s i s  of t h e  same considerat ions employed t o  der ive  

(111.42) 

has  X’-distribution with 2 b i  - 22 degrees of freedom. The ind ices  (1) and (2) 

i n  formula (111.42) are employed f o r  t he  loading and unloading, respect ively.  

i= 1 

Employing expressions (111.41) and (111.42) , based on the  theorem presented 
above, and taking i n t o  account t he  re la t ionship  (111.3) , w e  obta in  the  following 
c r i t e r i o n  

I n 2, “7 (u%-z~,J - (a,?. - c(,z)12 . y Ti- k - i):2)(,yi)) $ ki i 

. I g‘ (Xi) .I 1 F = 4%. .. - .  i- 1 i - 1  
(111.43) -- -- . - .I. ... . 

n ki I ’  
-y -\ :‘ - -  1 . [(&;I -- y , i )  2 + (p - y 
.’ I ’ I g’ (Si) 1 1  2 i ) ’ ]  
il.1 j-=l 

n 
which has F-dis t r ibut ion with 2 and 2(C’k - 1) degrees of freedom. 

i=l 
obtained i n  each s p e c i f i c  case leads t o  the  conclusion (which i s  p r o b a b i l i s t i c  
i n  nature)  of t h e  presence o r  absence of hys te res i s .  

The c r i t e r i o n  
i 

I n  the  case of equally accurate  measurements, w e  obtain the  following cri- 1176 
t e r i o n  

I 

which has F-dis t r ibut ion with 2 and 2 (kn - 2) degrees of  freedom 
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W e  s h a l l  make the next ca l cu la t ion  as follows. J u s t  as i n  the case of de- 
termining the agreement between experimental and t h e o r e t i c a l  r e l a t ionsh ips ,  which 
w a s  examined above, we  s h a l l  
employed according t o  the  t ab le s  given i n  (Ref. 3) t o  determine the --percentile 

r i g h t  cr i t ical  point  F 

i. e. , w e  assume t h a t  

select the level of s ign i f i cance  r, which may be 

2 
f o r  t he  F-distribution. W e  then assume a zero hypothesis, 2 

aq1 = aq2 

and w e  employ formula (111.43) -- o r ,  f o r  t he  case of equally accurate measure- 
ments, w e  employ formula (111.44) -- t o  ca l cu la t e  the quant i ty  F according t o  
t h e  experimental data. 
region, i.e., the following occurs 

I f  t he  experimental value of F f a l l s  within the  c r i t i ca l  

F > F,, 
which i s  assumed t o  be p r a c t i c a l l y  impossible under our conditions, w e  must then 
reject the hypothesis which has been advanced and conclude t h a t  h y s t e r e s i s  i s  
present.  I f  F f a l l s  within the region of permissible values,  i .e.,  i f  the fol-  
lowing occurs 

F < F2, 
i t  may then be assumed t h a t  the hypothesis of the absence of hys t e re s i s  does not 
contradict  t he  experimental conditions. 

Naturally,  t h i s  does not  lead t o  the  conclusion that h y s t e r e s i s  of t he  ela- 
s t i c  propert ies  i s  absent i n  t h e  material used t o  make an e las t ic  tensometric 
element. By changing the  experimental conditions,  i .e.,  by increasing i ts  ac- 
curacy, o r  by changing the  number of experimental points ,  w e  may de tec t  hys t e re s i s ,  
no m a t t e r  how s m a l l  i t  may be. However, v e r i f i c a t i o n  of t he  s ta t i s t ica l  hypothe- 
sis ind ica t e s  t h a t  under the conditions o f  the given experiment there is an in- 
significant mount of hysteresis, and the divergence betmeen the Zoading and un- 
Zoading curves may aZso be produced due t o  random measurement errors. 
case, no d i s t i n c t i o n  may be drawn between the loading and unloading curves, and 
a l l  the experimental da t a  are processed concurrently. 

I n  t h i s  

Sometimes, i f  hys t e re s i s  is  detected,  i t  is  necessary t o  obtain the  quantity 
which would character ize  the  extent  of hys t e re s i s .  

W e  s h a l l  assume t h a t  the elastic tensometric element has s m a l l  nonl inear i ty . j l77 

I 
This means t h a t  t he  curve 

d i f f e r s  from a s t r a i g h t  l i n e  t o  a very s m a l l  extent  
y1 -= cx. 

L e t  us study the  quant i ty  
I 2 (Zq1  - aqz) Y q  (4 

q= I 
cx n= 

(111.45) 
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Expression (111.45) character izes  t h e  divergence of the loading and unloading 
curves per ta ining t o  the  value of t he  quant i ty  being measured. The l a r g e s t  val- 
ue of II is na tu ra l ly  assumed as t h e  coe f f i c i en t  l? determining t h e  extent  of hys- 
teresis. 
t h e  operation of an elastic tensometric element must b e  metrological i n  nature.  
Therefore, w e  have 

= max 17. 

This approach is j u s t i f i e d  by the  f a c t  t h a t  any quant i ty  character iz ing 

L e t  xr be the  po in t  of t h e  l a r g e s t  value of IT. This point  may be found 
e i t h e r  within the  i n t e r v a l  

Axm < Xj- < x , ~ ,  

i n  which the measurements are 
i n  the  case x = Ax,. 

performed, o r  a t  the  boundary of t h i s  i n t e r v a l  
The c o e f f i c i e n t  A is  determinedby the dependence 

A = &  
x, '. 

where \ represents  the scale d iv i s ion ,  beginning a t  which the  measurement may 

be made (most frequently A = 0.1); 

x -- l imi t ing  load. 

Thus, w e  have 

m 

I 

(111.46) 

The following represents  an estimate of t h i s  quant i ty ,  obtained on the  
b a s i s  of experimental d a t a  

I 

A d - l  J' ( n q l -  nqz) i q  (-rr) (111.47) 

I n  order t o  determine the accuracy and r e l i a b i l i t y  of determining r*; l e t  
us formulate t h e  confidence i n t e r v a l  of t he  quant i ty  I' . 

Due t o  the  f a c t  t h a t  the difference /178 

I 

2 [ (QQ~ - aqi) - (aq2 - aq2)] . 'pq 
----__ f * - r =  qZ-1 -. 

C.Kr s 

is a l i n e a r  combination of s t a t i c t i c a l l y  independent quan t i t i e s  having a normal 
d i s t r ibu t ion ,  t h i s  difference has a normal d i s t r i b u t i o n  with the  center  a t  zero 
and the  dispers ion 
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I n  t h i s  expression it is assumed t h a t  the readings are made f o r  one imd the 

Nor- 

same values i n  the  case of loading and unloading, and f o r  each value of xi t he  

number of experimental points  is i d e n t i c a l  both f o r  loading and unloading. 
lalizing the difference I'*'- I', w e  obtain the quant i ty  

(111.48) 

which has a normal d i s t r i b u t i o n  with the parameters 0 and 1. 
pressions (111.42) and (111.48) f o r  the q u a n t i t i e s  V and 2, and a l s o  the theorem 
given above, we  may f i n d  the  desired c r i t e r i o n  

Employing the  ex- 

(111.49) 

n 

i=l 
which has the  Student d i s t r i b u t i o n  with 2 (Cki - 2) degrees of freedom. I n  the /179 

case of equally 
condition 

accurate measurements, f o r  k .  = k = const w e  obtain the following 
1 

(111.50) 

->. . . 

which has the  Student d i s t r i b u t i o n  with 2(kn - 2) degrees of freedom. 
d i t i o n  makes i t  possible  t o  formulate the confidence i n t e r v a l  f o r  t he  quant i ty  

This con- 

r. 
Defining t h e  confidence probabi l i ty  y and determining the quant i ty  t based 

Y 
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on the  t a b l e s  of y-percentile limits f o r  t he  Student d i s t r i b u t i o n ,  w e  obtain 

where s is  the  inverse value of t he  f a c t o r  f o r  t he  difference(r* ' -  l') i n  ex- 

pression (111.50). 
b 

L e t  us continue the  numerical example given i n  t h e  preceding sect ion.  L e t  
us determine whether h y s t e r e s i s  e x i s t s  i n  the  e las t ic  element, f o r  which test 
da t a  w e r e  given i n  Table 2. 
experimental value of F according t o  formula (111.43) are obtained by ca l cu la t ing  
t h e  a n a l y t i c a l  r e l a t ionsh ips  i n  the  case of unloading and loading, which w a s  
done i n  the  preceding sect ion.  

A l l  of t he  q u a n t i t i e s  necessary t o  ca l cu la t e  the 

Postulat ing t h e  zero hypothesis, i.e., assuming t h a t  

apl = aq2, 9 = 1,233, 
and a l s o  taking the  f a c t  i n t o  account t h a t  the measurements are equal ly  accurate  
and t h a t  ki = const = 3, w e  obtain the experimental value of the F condition on 

the  b a s i s  of formula (111.44) : 

W e  must now determine which region t h i s  value of F enters :  i n  t he  cr i t ical  &O 
region, or  i n  the region of permissible values. L e t  us def ine the  condition of 
s ignif icance r = 0.1, and l e t  us determine the r i g h t  c r i t i ca l  uoint  from the  
t a b l e  of 5% r i g h t  c r i t i ca l  values of F (Ref. 3) f o r  z = 3 and 2 (nk - 2) = 24 
degrees of freedom: 

F ,  -b 3,Ol. 

I n  the numerical examples given above, t he  5% probab i l i t y  5s used as the  
basis .  
given i n  (Ref. 3 ) ,  r e so r t ing  t o  l i n e a r  i n t e rpo la t ion ,  w e  obtain 

Since the  value of 2.5% r i g h t  cr i t ical  points  is absent i n  the  t a b l e  

F, = 4,08. 
It may thus be seen t h a t  t he  obtained value of t he  F condition f a l l s  within 

the c r i t i c a l  region not only f o r  a 10% l e v e l  of s ignif icance,  but  a l s o  f o r  a 5% 
level of s ignif icance.  It fo l lows  from t h i s  t h a t  w e  must r e j e c t  the hypothesis 
of t he  absence of hys t e re s i s .  
conditions of the given experiment we cannot disregard hysteresis. 

In  other words, we must asswne that  under the 

Hysteresis of an e l a s t i c  element i s  a source of systematic e r ro r .  
t i o n ,  the extent  of hys t e re s i s  may be used t o  determine the  s u i t a b i l i t y  of the 
elastic element arrangement being studied. Therefore, l e t  us determine t h e  

I n  addi- 
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coe f f i c i en t  r character iz ing hys t e re s i s .  The estimate of t he  quant i ty  II, deter- 
mined by formula (111.45) with allowance f o r  expressions (111.251, (111.26) , and 
(111.28) f o r  t he  system of functions se l ec t ed  i n  t h i s  example, acquires t h e  fd- 
lowing form 

('11 - O l d  x f (aZi - (122) (Xz + 6 , ~ )  + - ua2) x nr = x f X 3  + bz (-y2 4- 6 1 ~ )  + 63x1 (111.51) 
cx 

Since w e  must determine no more than two s i g n i f i c a n t  d i g i t s  f o r  the coef- 
f i c i e n t  r*; we  may confine ourselves t o  an approximate value of t h e  proportion- 
a l i t y  coe f f i c i en t  c i n  expression (111.51), assuming f o r  t h i s  purpose, f o r  ex- 
ample, the coe f f i c i en t  f o r  t he  l i n e a r  p a r t  of formula (111.34) o r  formulas 
(111.36). The method of determining the  coe f f i c i en t  c, based on the theory of 
t he  Chebyshev approximation, w i l l  be given i n  a following sect ion.  
value determined from t h i s  method is c = 5017.74, and d i f f e r s  from the coef- 
f i c i e n t s  f o r  t he  l i n e a r  p a r t s  of expressions (111.34) and (111.36) only i n  the  
fourth decimal place. 

The p rec i se  

Subst i tut ing the  numerical values of a l l  t he  coe f f i c i en t s  i n  formula (111.51), 
w e  obtain 

0 , 9 1 ~  - 0,36 (xZ - 8.18~) - 0,098 [w3 - 14,35 (9 - 8,18X) - 7!,2xI  
5017,74 . x 
-. - - .. 

(111.52) r/ = - - . . 

I n  order t o  use formula (111.47) t o  determine t h e  coe f f i c i en t  r*; w e  must 1181 
f ind  the  po in t  xr of t h e  l a r g e s t  value of II*. 

y i e l d s  the  equation 

The condition 
d n *  - = o  
dn 

- 0,36 - 2 * 0,098 . x + 0,098 . 14,35 = 0, 

from which w e  have x1 = 5.36. 

1 

Subst i tut ing t h i s  value i n  (111.52), w e  f ind  

II*'= 0.00042. Se t t i ng  A = 0.2, w e  obtain the following value of II*'at the bound- 

ary of the i n t e r v a l  f o r  x2 = Axm = 0.2010 = 2 

n; = 0,00021, 

Comparing the values of II*'and II*; w e  f i n a l l y  obtain 
1 2 

x,. = 5.36; F* = 0,00042 = 0,042 % . 
L e t  us formulate the 95 percent confidence i n t e r v a l  f o r  r. Omitting de- 

t a i l e d  calculat ions,  w e  s h a l l  give the f i n a l  value of t he  confidence i n t e r v a l  

0,00017 < f < 0,00065. 
The obtained value of r*'= 0.042%, which is  a systematic e r r o r ,  may be an 

important quant i ty  f o r  accurate fo rce  measuring devices -- comprising, f o r  ex- 
ample, almost h a l f  of t he  scale d iv i s ion  f o r  a scale with 1000 divisions.  I n  
order t o  e l iminate  t h i s  e r r o r ,  w e  may employ curves which have been ca l ib ra t ed  
separately for loading and unloading. 
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4. Determining the Nonlinearity Coeff ic ient  

Chapter I1 introduced the concept of t he  nonl inear i ty  coe f f i c i en t ,  a quan t i ty  
character iz ing the deviat ion of t he  fo rce  measuring device readings from the  
l i n e a r  dependence. 
t e r i z i n g  the  dependence of t he  quant i ty  being measured on the  output signal and 
between the s t r a i g h t  l i n e  approximating i t  i n  the  b e s t  manner (which represents  
t he  equation of t he  device scale) w a s  assumed t o  be the  nonl inear i ty  coe f f i c i en t .  

The l a r g e s t  relative divergence between the  curve charac- 

Condition (11.4), from which the  nonl inear i ty  coe f f i c i en t  m is  determined, 
acquires the  following form i n  the  notat ion employed i n  t h i s  chapter: 

(111.53) 

where X is, j u s t  as previously,  t he  sec t ion  of t h e  scale at which measurements 
may be i n i t i a t e d ,  and x is the  maximum load. 

It follows from P a r t  1, Chapter 11, t h a t  i t  is impossible t o  give the  for- 

m 

&8. 
mulas i n  a general  form f o r  determining the  nonl inear i ty  coe f f i c i en t  m and the  
proport ional i ty  coe f f i c i en t  c, s i n c e  each i n  s p e c i f i c  case i t  is  necessary t o  study 
the  form of t h e  curve (See Figure 63). Therefore, l e t  us derive these q u a n t i t i e s  
f o r  t he  two cases which are most important i n  p r a c t i c e  of approximating t h e  ex- 
perimental dependence by means of polynomials of t he  second and t h i r d  degrees. 
The metrological nature  of employing an elastic tensometric element always leads 
t o  a very s m a l l  nonl inear i ty ,  as w a s  indicated above, which is i n  essence a 
systematic e r r o r ,  and polynomials of higher degree 'are seldom used. 

Taking the  s m a l l  nonl inear i ty  i n t o  account, w e  may show t h a t  t he  s a t i s f y i n g  
of condition (111.53) f o r  t h e  case of polynomials of t h e  second and t h i r d  de- 
gree leads t o  t h e  l a r g e s t  deviations a t  the  ends of the i n t e r v a l  (Xxm,xm). 

(111.54) 

m u s t  be  approximated i n  the  b e s t  way ( i n  the  sense given above) by the  following 
l i n e a r  r e l a t ionsh ip  

y1 = cx. (111.55) 

Employing formulas (111.54) and (111.55) w e  may f ind  the expression f o r  the 
relative deviat ion 

a ~ + a & - c  a2. A ( x ) = m = -  . + c x .  
C (111.56) YI 

Satisfying condition (111.53), w e  obtain the following system of equations 
f o r  determining the  coe f f i c i en t s  c and m: 

a L + a 2 b - c  a + $- )xfn = - m; 
C 

a, + a,b- c 
++x,,=+m, 
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(111.57) 

W e  m u s t  point  out  the following. When the  nonl inear i ty  coe f f i c i en t  is  de- 
termined ( j u s t  as when the e r r o r  i n  general  is  determined), t he  f i r s t ,  no more 

that allowance f o r  the two last  terms contained i n  the  denominator only y i e l d s  
a correct inn i n  the  t h i r d  s i g n i f i c a n t  d i g i t  f o r  t he  quant i ty  m. 
a l s o  due t o  the  s m a l l  nonl inear i ty  of elastic tensometric elements. 
bas i s ,  t he  nonl inear i ty  coe f f i c i en t  equals 

than two, s i g n i f i c a n t  d i g i t s  are always important. Computations have shown /183 
This f a c t  is 

On t h i s  

A f u r t h e r  s impl i f i ca t ion ,  leading t o  l i n e a r i z a t i o n  of t he  quant i ty  m, con- 

The accuracy of t h i s  s u b s t i t u t i o n  may be i l l u s t r a t e d  by m e a n s  of confi- 

12 

sists of replacing the coe f f i c i en t  u1 by i ts  estimate a 

ments. 
dence i n t e r v a l s  f o r  t h e  q u a n t i t i e s  a1 and ct 

ample given i n  P a r t  2, Chapter I11 

obtained from experi- 1 

obtained i n  the  numerical ex- 

(111.58) 

The t h e o r e t i c a l  value of t he  coe f f i c i en t  m is estimated from experiment 
by t h e  quant i ty  

(111.59) 

Normalizing the difference m * ' -  m, w e  obtain - -  

which has normal d i s t r i b u t i o n  with the  parameters 0 and 1. Employing t h i s  q u a -  
t i t y ,  as w e l l  as expression (111.151, and taking t h e  dependence (111.3) i n t o  

m*'- m account, w e  obtain the  condition tm = - 
m 

sented i n  P a r t  2, Chapter I11 

on the b a s i s  of t he  theorem pre- 
S 

s,, == (111.60) 
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I 

n 
which has the  Student d i s t r i b u t i o n  with C ki - 2 degrees of freedom, and +,(x) = 
x2 + bx. i=l 

The condition obtained enables us t o  formulate the  confidence i n t e r v a l  f o r  
the nonl inear i ty  coe f f i c i en t .  For the  given confidence p robab i l i t y  y, we ob ta in  

m:> - t . s,, < m < m* + tlsm. 

L e t  us t u rn  t o  the  second of t he  cases under consideration. W e  m u s t  approxi- &? 
m a t e  t he  polynomial of t he  t h i r d  degree by m e a n s  of t he  l i n e a r  dependence (111.55) 

!! = ElX f- CI-2 (9 + b,x) f 0.3 [XS  4- b, (XZ + b,X) + b3x] = 
= (111.61) 

i- .&,.-I- 0.3D]b, + 0.363) x + (aZ + a3b,) xz + a3x3. 

On t h e  b a s i s  of formulas (111.55) and (III .61),  t h e  r e l a t i v e  deviat ion has 
t h e  form 

, A ( ~ )  - Y - Y i  - ~ i ~ - ~ ~ ~ ~ ! ~ ~ ~ / ~ , ~ ~ . ~ l ~ ~ ~ 3 6 ~ , - ~  az+a3h  + 2cXz 
W C -1- C 

Condition (111.53) is s a t i s f i e d  by the  following system of equations 

A ()xn,) = -m; 
A (x,J = + 112. 

Solving this system with respect  t o  c and m and, j u s t  as i n  the  preceding 
case, discarding terms which are s m a l l  as compared t o  the  coe f f i c i en t  a1 i n  t h e  
denominator of m y  w e  obtain 

Linear izat ion of the coe f f i c i en t  m y i e lds  

The experimental value of m has the following form 

(111.63) 

On the b a s i s  of these two equations, w e  may formulate the following rela- 
tionshir, 

The r i g h t  hand s i d e  of t h i s  formula represents  a l i n e a r  combination of t he  
q u a n t i t i e s  (a2 - a2) and (a3 - o13)which have a normal d i s t r ibu t ion .  

Consequently, t h e  quant i ty  
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has a normal d i s t r i b u t i o n  with the center  a t  zero and dispers ion equal t o  1. 
Employing the same l i n e  of reasoning as before,  we  obtain t h e  following con- 
d i t i o n  

1185 

( I n *  - r n )  2 .al{$ k ,  - 

I . r = l  t,, = . -__ 
1 [b2 + (1 + x,,,12 f- n 

'9 gK k l  y: ( x i )  
(111.64) 

i= 1 i-= I 

which has the  Student 

t i ons  +,(XI and +,(XI 

n 

i= 1 
d i s t r i b u t i o n  with C ki- 1 degrees of freedom. 

are determined according t o  formulas (111.26) and (111.28). 

The func- 

Introducing the  following no ta t ion  

(111.65) 

and defining the  r e l i a b i l i t y  r, w e  may formulate the confidence i n t e r v a l  
m*'- t 0s <m<m*'+ t *S on the  b a s i s  of condition tm. 

~m ~m 
L e t  us give a numerical example. L e t  us employ the  r e s u l t s  derived from 

an experimental study of an elastic element as the i n i t i a l  data. 
w e r e  analyzed i n  the preceding sect ions.  
a r r i v e  a t  the  conclusion t h a t  the difference between the loading and unloading 
curves is  so grea t  t h a t  it cannot be explained only by'measurement e r ro r s .  Con- 
sequently,  w e  m u s t  reach the  conclusion of a l a rge  quantity.  
t he  experimental da t a  per ta ining t o  loading and unloading m u s t  be  processed 
separately,  although the  p o s s i b i l i t y  is  not excluded of employing a s i n g l e  
c a l i b r a t i o n  graph, o r  a s i n g l e  scale, i f  t he  requirements on the equipment 

These r e s u l t s  
Verifying the  zero hypothesis,  w e  

This means t h a t  
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accuracy are such t h a t  the systematic e r r o r  produced by h y s t e r e s i s  represents  a 
s m a l l  po r t ion  of t he  t o t a l  permissible e r ro r .  

/18; 

L e t  us determine the non l inea r i ty  c o e f f i c i e n t  m*'for the loading curve. 
1 

Assuming t h a t  X = 0.2 and s u b s t i t u t i n g  the  value of the coe f f i c i en t s  (111.33) i n  
formula (111.631, we  ob ta in  m * ' =  0.00051 = 0.051%. 

1 
L e t  us formulate t h e  confidence i n t e r v a l  character iz ing the  accuracy and 

r e l i a b i l i t y  of t h i s  determination. 
mine t h e  value of sml. 

obtain 

Based on formula (111.65), we  may deter- 
Taking the f a c t  i n t o  account t h a t  ki = const = 3, w e  

- _. 

.lf/296 1 [--14,35 + 1,2 1012 
4848 

= 0,000107. - --__ - 

0,8'. 10 
- -_ 

2.502-1. 1/3(3.5-3j 

For 3.5 - 3 = 12 degrees of freedom, from the  Student d i s t r i b u t i o n  t ab le s  
w e  obtain the  5% l i m i t  t = 2.179. Y 

Fina l ly ,  t he  95% confidence i n t e r v a l  f o r  t he  nonl inear i ty  coe f f i c i en t  i s  
0.027% c m < 0.075%. 

Formula (111.62) y i e lds  the  following value of t h e  proport ional i ty  coef- 
f i c i e n t  c = 5017.74. 

Performing similar calculat ions,  w e  may determine the nonl inear i ty  coeffi-  
Omitting the d e t a i l s ,  w e  arrive a t  the  c i e n t  m f o r  t he  unloading curve. 

f i n a l  r e s u l t  
2 

r n ;  = 0,OG 1 % ; 0,026 % < In < 0,096 % . 

5. Comments on t h e  Accuracy of Force Measuring Devices .- . . 

Measurement e r r o r s  may be divided i n t o  systematic e r r o r s  and random e r ro r s .  
I f  t h e  scale of t he  device is  not  unusual-- o r ,  f o r  example, i f  t he re  is no 
c a l i b r a t i o n  graph -- then the  nonl inear i ty  and hys t e re s i s  examined above lead 
t o  a systematic e r ro r .  There are methods of eliminating the  systematic e r ro r s .  
Therefore, when studying the  accuracy of fo rce  measuring devices, we s h a l l  only 

/187 
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take i n t o  account t h e  random e r r o r s  or ,  as they are ca l l ed ,  the measurement 
e r ro r s .  
is  discussed i n  the  fundamental study (Ref. 9). 

The ca l cu la t ion  of equipment accuracy, based on a normal d i s t r i b u t i o n ,  

L e t  us determine the  accuracy of a fo rce  measuring device when the re  is  a 
s m a l l  number of experimental data.  

L e t  us assume t h a t  the unknown reading vi of t he  force measuring device 

corresponds t o  any value of the independent var iable .  

where the indices  have the  same meadng employed i n  t h e  entire chapter. 
as previously, we  s h a l l  assume t h a t  t h e  measurement e r r o r s  6 

independent, have normal d i s t r i b u t i o n ,  and have a mathematical expectation equal 
t o  zero and a standard deviat ion a (x . )  . W e  s h a l l  assume t h a t  t he  measurements 

are not  equally accurate,  and o(xi) = aog(xi), where g(x) is the  unknown function. 

The maximum possible  deviat ion from the accurate reading, expressed i n  per- 
cents ,  is  usually employed t o  determine the  accuracy of force measuring devices. 
L e s s  frequently,  t he  deviation pe r t a ins  t o  the upper l i m i t s  of the device scale. 
This m e a n s  t h a t ,  i f  allowance is  made f o r  the assumption advanced above regarding 
the  d i s t r i b u t i o n  of measurement e r r o r s  according t o  a normal l a w ,  t he  device 
accuracy is  characterized by the  width of the confidence in t e rva l .  The value of 
t he  confidence p robab i l i t y  is  establ ished by means of the p r inc ip l e  of p r a c t i c a l  
r e l i a b  i li t y  . 

I n  a c t u a l i t y ,  t he  reading, 
which is obtained during the  ca l ib ra t ion  and which is  an estimate of ni, is  Yij ,  

Just 

- 'li are 
- 

i j  - 'ij 

1 

On the  b a s i s  of t he  assumptions advanced above, t he  following quant i ty  

(111.66) 

has normal d i s t r i b u t i o n  with the  center  a t  zero and dispersion equal t o  unity. 
Determining the y-percentile l i m i t  z f o r  the normal d i s t r i b u t i o n ,  w e  f i nd  that: 

t he  inequa l i ty  -z a(xi)<yij-q.<z *a(xi) holds f o r  t he  p robab i l i t y  y. 
Y 

Y 1 Y  
I n  t h i s  case, the  accuracy of t he  readings f o r  any value of x is deter- i 

mined by the  quant i ty  

The accuracy of a force measuring device is customarily expressed by the 
l a r g e s t  value of T 

(111.67) 

where 5 is the  point  of t he  m a x i m u m  of T. 

However, t he  quant i ty  T is always unknown, and i t  is determined during /188 T 

17 3 



c a l i b r a t i o n  with a 
formula, w e  should 

small number of measurements. 
note  t h a t  t he  quant i ty  

In  order  t o  obtain the  working 

(111.68) 

n 
has t h e  X2-distribution with C ki- n degrees of freedom. The value of Ti con- 

i-1 
ta ined  i n  expression (111.68) is  determined by formula (111.10). 
account t h e  expressions (111.66) and (111.68), on the  b a s i s  of t h e  theorem 
given i n  P a r t  2 ,  Chapter 111, w e  obtain the  followinn condition 

Taking i n t o  

f n  

t& = 

n 

i= 1 
which has the  Student d i s t r i b u t i o n  with C ki- n 

mination of TT is now given by the  following formula 

degrees of freedom. The deter-  

(111.67') 

Instead of rlT, i ts estimate 7 is  s u b s t i t u t e d  i n  the  denominator of t h i s  T 
expression. This s u b s t i t u t i o n  is  absolutely permissible,  s i n c e  i t  is  s u f f i c i e n t  
t o  determine no more than the two f i r s t  s i g n i f i c a n t  d i g i t s  when determining t h e  
equipment accuracy. 

The necessi ty  w a s  pointed out above of processing the  test r e s u l t s  during 
loading and unloading, due t o  t h e  occurrence of hys t e re s i s .  However, i n  t h i s  
case when determining t h e  equipment accuracy, we may employ the  information 
obtained from experiment both f o r  unloading and loading. 
should note  t h a t  t he  condition 

For t h i s  purpose, we 

n 
has the Student d i s t r i b u t i o n  with 2 (Ck - n)  degrees of freedom. J u s t  as 1189 

above, t he  indices  (1) and (2) i nd ica t e  whether t he  q u a n t i t i e s  p e r t a i n  t o  

174 



loading o r  unloading, respectively.  W e  obtain 

It may be seen from t h i s  expression t h a t  i n  the case of equally accurate 
measurements w e  must use the  i n i t i a l  po in t  Axm of t h e  measurement i n t e r v a l  as 

the quant i ty  xT. 

L e t  us demonstrate with a numerical example. W e  may der ive the  da t a  f o r  
t he  calculat ion from the  example examined above. 
equally accurate,  formula (111.68) acquires the following form, with allow- 
ance f o r  g(x) f 1 and k = const = k 

Since the  measurements are 

i 

. ~ - 
yT 1 / 2  (nk - n) 

For 2(nk - n) = 20 degrees of freedom, s e t t i n g  the confidence p robab i l i t y  
y = 0.999, w e  obtain t = 3.85. 

occur a t  the  beginning of t h e  i n t e r v a l  hr x =Ax = 2. Subst i tut ing a l l  t he  

numerical values i n  expression (111.69), w e  obtain 
T; = 0,0026. 

The m a x i m u m  value of t he  quant i ty  T % ' w i l l  Y 
T m  

Thus, f o r  t he  given r e l i a b i l i t y  0.999, the maximum e r r o r  of a force mea-  
sur ing device i s  0.26%. 

Somet imes  t he  accuracy of the weights i s  determined by r e l a t i n g  the  e r r o r  
t o  the  upper m2asurement l i m i t .  

ym = 50243.3, and based on formula (111.69), w e  obtain 

I n  our case, f o r  x = x = 0 t h e  quant i ty  m 

The nonl inear i ty  coe f f i c i en t  m* '=  0.051% and the  magnitude of h y s t e r e s i s  
r* '= 0.042% w e r e  obtained above. W e  thus f i n d  t h a t  the systematic error pro- 
duced by hysteresis and the nonlinearieg is comnensxrate with rmdom measure- 
ment errors. Consequently, they cannot be neglected. 

REFERENCES 

1. Blokh, Z.Sh. Osnovnyye r e z u l ' t a t y  rabot P.L. Chebysheva PO metricheskomu 
s in t ezu  ploskikh mekhanizmov. 
mental r e s u l t s  of t he  s t u d i e s  by P.L. Chebyshev on metr ic  synthesis  of 
two-dimensional mechanisms. S c i e n t i f i c  h e r i t a g e  of P.L. Chebyshev). 
I zda te l ' s tvo  AN SSSR, 1945. 

Nauchnoye naslediye P.L. Chebysheva (Funda- 

17 5 



I 

2. Gokun, M.V. Designing Elastic Elements of Certain Types. Ispytatel'nyye 
Mashiny i Siloizmeritel'nyye pribory, Series VII. Published by Tsentral' 
noye Byuro Tekhnicheskoy Informatsii, Goskomiteta Soveta Ministrov SSSR 
PO Avtomatizatsii i Mashinostroyeniyu, 1962. 

kaya statistika v tekhnike (obshchaya chast') (Theory of Probability -and 
Mathematical Statistics in Technology (General Section). Gostekhizdat, 
MOSCOW, 1955. 

Designs of Chemical Machines and Apparatus). Mashgiz, 1952. 

i dozatorov dlya sypuchikh mass (Design and Construction of Weighing Mech- 
anisms and Batchers for Friable Masses). Mashgiz, 1963. 

Prochnost' elementov parovykh turbin (Strength of Steam Turbine Components). 
Mashgiz , 1961. 

Shells). Gostekhizdat , 1947. 

with Variable Cross Section. Priborostroyeniye, No. 8, 1962. 

1949. 

Prikladnaya Matematika i Mekhanika, Vol. XV, No. 5,  1951. 

noy Literatury, MOSCOW, 1957. 

N.N., Feodos'yev, V.I. Raschety na prochnost' v mashinostroyenii (Strength 
Calculations in Machine Construction). Vol. 11, Mashgiz, 1958. 

13. Popov, O.P. Nelineynyye zadachi statiki tonkikh sterzhney (Nonlinear Problems 
in the Statics of Thin Rods). Gostekhizdat, 1948. 

14. Timoshenko, S.P. Plastinki i obolochki (Plates and Shells). Gostekhizdat, 
1948. 

15. Timoshenko, S.P. Soprotivleniye materialov (Resistance of Materials). Vol 1, 
Fizmatgiz, MOSCOW, 1960. 

16. Timoshenko, S.P. Ibid, Vol. 11, Ob'yedineniye Gosudarstvennykh Izdatel'stv, 
1946. 

17. Tumarkin, S.A. Asymptotic Solution of a Linear Nonhomogeneous Differential 
Equation of the Second Order with a Transition Point and its Application in 
Designing Toroid-Shaped Shells and Blades. Prikladnaya Matematika i Mekh- 
anika, Vol. 23, No. 6,  1959. 

nicheskoye primeneniye (Wire Transformers and their Technical Application) . 
Gosenergoizdat, Moscow-Leningrad, 1957. 

Mal'ginov, L.I. Kurs soprotivleniya materialov (Course on the Resistance 
of Materials). Part 11, Gostekhizdat, 1949. 

i Mashinostroyeniye), Otdel Tekhnicheskikh Nauk, No. 4,  1961. 

Plate with a Concentric Rib. Vestnik Mashinostroyeniya, No. 7, 1963. 

3. Dunin-Barkovskiy, I.V., Smimov, N.V. Teoriya veroyatnostey i matematiches- 

4 .  Kantorovich, Z.B. Osnovy rascheta khimicheskikh mashin i apparatov, (Basic 

5. Karpin, Ye.B. Raschet i konstruirovaniye vesoizmeritel'nykh mekhanizmov 

6 .  Kuratov, P.S. Stress State of a Toroidal Coupling. In the Collection: 

7. Lur'ye, A.M. Statika tonkikh uprugikh obolochek (Statics of Thin Elastic 

8. Malikov, G.F., Shneyderman, A.L. Design of a Circular Type of Dynamometer 

9. Malikov, M.F. Osnovy metrologii (Foundations of Metrology). Kommerpribor , 

10. Novozhilov, V.V., Zenova, Ye.F. Symmetrical Deformation of Toroidal Shells. 

11. Perry, K. and Lissner, G. Foundations of Tensometry. Izdateltstvo Inostran- 

12. Ponomarev, S.D., Biderman, V.M., Likharev, K.K., Makushkin, V.M., Malinin, 

18. Turichin, A.M., Novitskiy, P.V. Provolochnyye preobrazovateli i ikh tekh- 

19. Filonenko-Borodich, M.M., Izyumov, S.M., Olisov, B.A., Kudryavtsev, I.N., 

20. Chernina, V.S. Designing Toroid-Shaped Shells. Izvestiya AN SSSR (Mekhanika 

21. Shneyderman, A.L. Design of an Elastic Element Having the Shape of a Circular 

176 



I I  .-. ....-. I. I I, I, I I , 

NASA TT F-513 

22. Entsiklopedicheskiy spravochnik "Mashinostroyeniye" (Encyclopedical Hand- 

23. Clark, R.A. On the Theory of Thin Toroidal Shells. J. Math. and Phys., 

24. Engl, W., and Mlinskiy, D. A Quality Factor for the Mechanical Behavior of 

book "Machine Construction") . Vol. 1, Book 2, Mashgiz y 1948. 
Vol. 29, No. 3, 1950. 

Force Measuring Cans Containing StrainGauges. Zeitschrift fur Instrument- 
enkunde, No. 4, 1961. 

Circular Ring. Angew. Math. and Phys.., No. 1, 1957. 

Vol. 103, No. 22, 1961. 

Systems for the Measurement of Non-electrical Quantities. VDY - Zeit- 
schrift, Vol. 100, No. 1, 1958. 

Ingenieur, VII, No. 26, 67, 1955. 

with Reference to the Stokes' Phenomenon about a Singular Point. 
her. Math. SOC., Vol. 37, 1935. 

25. Gross, W. The Second Fundamental Problem of Elasticity Applied to a Plane 

26. H o r h ,  K. Electrical Measurement of Forces and Pressures. VDY - Zeitschrift, 
27. Klein, P.E. Piezoelectric Transducers and Transducers with Resistance 

28. Knipers, M. Calculation and Dimensioning of Measurement Elements. De 

29. Langer, R.E. On the Asymptotic Solutions of Ordinary Differential Equations 
Trans. 

30. Wiethoff, G. Modern Electronic Weighing. Werkstattechnik, No. 10, 1960. 

Scientif ic Trans Zat&m Service 
4849 Tocalma L a m  
La Canada, Califomzia 91011 
NASw 1496 

NASA-Langley, 1968 - '' F-513 177 



“The aeronautical and space activities of the United States shall be 
conducted so as t o  contribute . . . to the expansion of human howl-  
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the results thereof .” 

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and technical information considered 
important, complete, and a lasting contribution to existing knowledge. 

TECHNICAL ‘NOTE!: Information less broad in scope but nevertheless of 
importance as a contribution to existing knowledge. 

TECHNICAL’ MEMORANDUMS: Information receiving limited distribu- 
tion becaus; of preliminary data, security classification, or other reasons. 

CONTRkTOR REPORTS: Scientific and technical information generated 
under a NASA contract or grant and considered an important contribution to 
existing knowledge. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information derived from or of value to NASA 
activities. Publications include conference proceedings, monographs, data 
compilations, handbooks, sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on tech- 
nology used by NASA that may be of particular interest in commercial and other 
non-aerospace applications. Publications include Tech Briefs, Technology 
Utilization Reports and Notes, and Technology Surveys. 

Defails on the availabilify of these publications may be obfained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Washington, D.C. PO546 


